首页|基于机器学习和社群互动信息的用户购买意愿分析

基于机器学习和社群互动信息的用户购买意愿分析

扫码查看
本文指出随着短视频平台以及社交平台与电子商务愈发深入的融合发展,越来越多的人参与到和商家的社群互动中并进一步发生购买行为.为了分析并建模社群互动信息和用户购买意愿之间的关系,本文采用机器学习算法对社群互动信息数据进行了分析处理,构建出用户购买意愿预测模型.为了使模型更具有泛化性,降低人为经验的影响,模型采用Transformer模型端到端的训练拟合社群互动信息对用户购买意愿的影响机理.实验结果表明,Transformer模型利用社群互动信息对用户购买意愿进行预测的效果最优,在预测准确率方面明显高于其他模型.
User Purchase Intention Analysis Based on Machine Learning and Community Interaction Information
This paper points out that with the in-depth integration and development of short video platforms and social platforms and e-commerce,more and more people are participating in community interactions with merchants and further purchasing behaviors.In order to analyze and model the relationship between community interaction information and user purchase intention,this paper uses machine learning algorithm to analyze and process the community interaction information data,and builds a user purchase intention prediction model.In order to make the model more generalized and reduce the influence of human experience,the model adopts the end-to-end training of the Transformer model to fit the influence mechanism of community interaction information on users'purchase intention.The experimental results show that the Transformer model uses the community interaction information to predict the user's purchase intention the best,and its accuracy is significantly higher than other models.

community interaction informationuser purchase intentionmachine learningTransformer modelend-to-end

周毅勇

展开 >

闽南理工学院实践教学中心, 福建 石狮 362700

社群互动信息 用户购买意愿 机器学习 Transformer模型 端到端

2024

科技创新与生产力
太原科技战略研究院

科技创新与生产力

影响因子:0.271
ISSN:1674-9146
年,卷(期):2024.45(2)
  • 12