首页|基于改进鲸鱼群算法的低碳柔性车间调度研究

基于改进鲸鱼群算法的低碳柔性车间调度研究

扫码查看
针对柔性制造车间单独考虑完工时间或设备利用率等问题,本文建立以最大完工时间、碳排放量为目标的双目标优化问题的调度模型.对于传统鲸鱼群算法收敛速度较慢,易陷入局部最优的问题,本文提出了一种基于惯性权重和混沌扰动的收敛因子二者相结合的搜索方式,设计了一种改进的鲸鱼群算法.该算法根据车间调度特点,采用两段等长式编码,加快机器选择与个体位置之间的转换速度;采用混合式初始化种群,提高种群多样性;加入惯性权重以及混沌扰动的收敛因子,平衡算法搜索能力;引入多项式变异策略,帮助算法及时跳出局部最优.在测试函数下,与遗传算法和传统鲸鱼群算法进行了对比,验证了该算法的搜索能力更优.同时,通过实例验证,进一步表明了改进的鲸鱼群算法的有效性.
Research on Low-carbon Flexible Workshop Scheduling Based on Improved Whale Optimization Algorithm
In this paper,a scheduling model with dual objectives of maximizing completion time and minimizing carbon emissions is established to address issues such as completion time or equipment utilization for flexible manufacturing workshops.Due to slow convergence and susceptibility to local optima,a modified whale optimization algorithm is proposed using a search method that combines inertia weight and chaotic disturbance convergence factor in this paper.The algorithm is designed based on the characteristics of workshop scheduling,adopting a two-segment equal-length coding method to accelerate the transformation speed between machine selection and individual position;a hybrid initialization population is used to improve population diversity;inertia weight and chaotic disturbance convergence factor are incorporated to balance algorithm search capability;and a polynomial mutation strategy is introduced to help the algorithm escape local optima.The algorithm's search capability is compared with genetic algorithms and traditional whale algorithms under test functions,verifying its superiority.Furthermore,through practical examples,the effectiveness of the improved whale optimization algorithm is further demonstrated.

Flexible Job-shopcarbon emissionsbi-objective schedulingwhale optimization algorithmalgorithm enhancement

王昊、冯国红

展开 >

东北林业大学工程技术学院,黑龙江 哈尔滨 150040

柔性作业车间 碳排放量 双目标调度 鲸鱼群算法 算法改进

中央高校基本科研业务费专项黑龙江省自然科学基金

2572020BL01LH2020C050

2024

科技创新与生产力
太原科技战略研究院

科技创新与生产力

影响因子:0.271
ISSN:1674-9146
年,卷(期):2024.45(5)