首页|基于机器学习的城市房屋不动产大数据挖掘与分析研究

基于机器学习的城市房屋不动产大数据挖掘与分析研究

扫码查看
本文指出对城市房屋不动产数据进行挖掘和分析十分有利于分析城市房屋不动产的交易规律,但各类预测算法预测效果的优劣尚不明确。为此,通过对某市二手房成交价格进行大数据分析,对比了 4 种二手房交易价格预测算法的预测效果。结果表明:在房屋面积小于 90 m2 时,房屋成交价格大都小于均价,当在房屋面积介于 90~120 m2 时,房屋成交价格基本维持在均价附近,当房屋面积大于 120 m2 时,房屋成交价格离散性很大;4 种预测算法的平均绝对误差、均方误差、均方根误差从大到小均为:Lasso模型>Random Forest Regressor算法>XGBoost算法>Stacking算法;Stacking预测算法的平均绝对误差、均方误差、均方根误差在 4 种算法中最小,准确率最高,故Stacking预测算法更适宜用来预测二手房价格。研究结果可为城市房屋不动产交易决策提供参考。
Research on Big Data Mining and Analysis of Urban Housing Real Estate Based on Machine Learning
This paper points out that the mining and analysis of urban housing real estate data is very conducive to the analysis of the trading rules of urban housing real estate,but the advantages and disadvantages of various prediction algorithms are not clear.Therefore,through the big data analysis of the transaction price of second-hand housing in a city,the prediction effects of four second-hand housing prediction algorithms are compared.The results show that when the housing area is less than 90 square meters,the transaction price is mostly less than the average price;when the housing area is between 90 and 120 square meters,the transaction price of the house is basically maintained near the average price;when the housing area is greater than 120 square meters,the transaction price of the house is very discrete.The average absolute error,mean square error and root mean square error of the four prediction algorithms from large to small are:Lasso model>Random Forest Regressor algorithm>XGBoost algorithm>Stacking algorithm;the average absolute error,mean square error and root mean square error of the Stacking prediction algorithm are the smallest among the four algorithms,and the accuracy is the highest.Therefore,the Stacking prediction algorithm is more suitable for predicting the price of second-hand housing.The research results can provide reference for the decision-making of urban housing real estate transactions.

machine learningprediction algorithmreal estate transactionerror analysis

李云云

展开 >

三和数码测绘地理信息技术有限公司,甘肃 天水 741000

机器学习 预测算法 不动产交易 误差分析

2024

科技创新与生产力
太原科技战略研究院

科技创新与生产力

影响因子:0.271
ISSN:1674-9146
年,卷(期):2024.45(10)