首页|基于CEEMDAN-AsyHyperBand-MultiTCN的短期风电功率预测

基于CEEMDAN-AsyHyperBand-MultiTCN的短期风电功率预测

扫码查看
为减少风电功率短期预测误差,提高风电利用效率,提出一种基于经验模态分解和异步超参数优化的多层时间卷积网络(CEEMDAN-AsyHyperBand-MultiTCN)的短期风电功率预测方法.首先,确定序列分量的数量,并使用自适应噪声完备集合经验模态分解(CEEMDAN)对原始风电功率进行分解,构成训练数据集.其次,使用深度残差级联(DRnet)构建多层的时间卷积网络(TCN),并使用AsyHyperband算法对序列分量模型进行超参数寻优.最后,对序列分量分别进行预测,重构预测结果得到预测值.实验表明,该文提出的方法相比于其他方法能有效降低风电功率预测误差.
SHORT-TERM WIND POWER PREDICTION BASED ON CEEMDAN-AsyHyperBand-MultiTCN
In order to improve the utilization efficiency and accuracy of short-term wind power,this paper proposes a method based on complete ensemble empirical mode decomposition with adaptive noise and multi-layer temporal convolution networks(CEEMDAN-AsyHyperBand-MultiTCN).Firstly,determine the number of sequence components,and then decompose the time series of wind power as training dataset using CEEMDAN.Secondly,apply the Deep Residual Cascade(DRnet)to build a multi-layer Temporal Convolutional Networks(TCN)model for each component,and the AsyHyperband algorithm is used to optimize the hyperparameters for the components model.Finally,the final prediction result is obtained after reconstructing the prediction results of each component model.The experimental results show that the proposed method can effectively reduce the wind power prediction error compared with other methods.

wind powerforecastingneural networksmultilayerscomplete ensemble empirical mode decomposition with adaptive noisehyperparameter search

刘凡、李捍东、覃涛

展开 >

贵州大学电气工程学院,贵阳 550025

风电功率 预测 神经网络 多层 集成经验模态分解 超参数搜索

国家自然科学基金

52167007

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(1)
  • 8