首页|基于VMD-BOA-LSSVM-AdaBoost的短期风电功率预测

基于VMD-BOA-LSSVM-AdaBoost的短期风电功率预测

扫码查看
针对风电信号具有间歇性、非线性、波动性、非平稳性和不确定性等特征,建立一种基于变分模态分解(VMD)和蝴蝶优化算法(BOA)优化最小二乘支持向量机(LSSVM)的风电功率短期预测模型,为提高预测精度,引入自适应校正算法(AdaBoost).首先,利用变分模态分解将原始功率信号数据分解多个子序列.其次,利用蝴蝶优化算法优化最小二乘支持向量机组合预测模型对每个子序列进行预测.最后通过自适应校正算法将多个分量预测值重构得到最终的预测值,结合西北某一风电场提供的风电功率数据为例验证模型的有效性.结果验证了建立的组合预测模型能够较好地对短期风电功率进行预测,并具有较好的预测精度.
SHORT-TERM WIND POWER PREDICTION BASED ON VMD-BOA-LSSVM-AdaBoost
Aiming at the intermittent,nonlinear,fluctuating,non-stationary and uncertain characteristics of wind power signals,the short-term forecasting method for wind power is established,which is based on Variational mode decomposition(VMD)and butterfly optimization algorithm(BOA)to optimize least squares support vector machine(LSSVM)and introducing adaptive correction to improve accuracy.Firstly,the raw power signal data is splitted into multiple subsequences by using VMD.Secondly,BOA is used to optimize combined prediction model of LSSVM to predict each subsequence.Finally,the prediction value of multiple components is reconstructed through AdaBoost to obtain the final prediction value.Combined with the wind power data provided by a wind farm in Northwest China as an example,the effectiveness of the model is verified.The results show that the combined forecasting model established above can predict the short-term wind power well and has a good forecasting accuracy.

wind power predictionLSSVMVMDAdaBoostprediction accuracy

史彭珍、魏霞、张春梅、谢丽蓉、叶家豪、杨家梁

展开 >

新疆大学电气工程学院,乌鲁木齐 830046

北京师范大学数学科学学院,北京 100875

风电功率预测 最小二乘支持向量机 变分模态分解 自适应校正 预测精度

国家自然科学基金

62163034

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(1)
  • 14