首页|一种基于EGK-均值聚类和PCA的海流发电机叶片冲击故障检测方法

一种基于EGK-均值聚类和PCA的海流发电机叶片冲击故障检测方法

扫码查看
海流发电机受海流流速变化、随机湍流的影响呈现多变工况,想要准确检测出叶片冲击故障是一项巨大挑战.基于此,提出一种基于包络几何特征聚类(EGK-均值聚类)的方法用于划分变工况下产生的定子电流信号,在不同子工况下建立故障检测模型.首先,根据样本矩阵构建包络几何特征矩阵,利用几何特征矩阵确定初始聚类中心进行聚类;然后,基于各工况下的包络数据分别进行主元分析以降低数据维度;最后,T2 和SPE统计量被计算用于实时冲击故障检测.一台海流发电机样机及配套循环水槽被搭建验证本文所提方法.实验结果表明本文所提方法在变工况下针对海流发电机叶片冲击故障有着显著的识别能力和检测精度.
AN IMPACT FAULT DETECTION METHOD OF MARINE CURRENT TURBINE BLADE VIA EGK-MEANS AND PCA
The operating conditions of MCTs are affected by varying water velocity and random turbulence.The blades of the MCT s are prone to cracks due to long-term exposure to sea water and are quickly impacted by fish or seabed creatures.Frequent changes in marine currents lead to variable working conditions.A detection method based on envelop geometrical K-means(EGK-means)to divide the stator current signals generated under variable conditions and establish fault detection models is proposed.First,construct the envelope geometric feature based on the sample matrix,use the geometric feature matrix to select the initial clustering center for clustering,perform PCA modelling based on the current data under each working condition to reduce the data dimension.Finally,the T2 and SPE statistics are calculated for real-time fault detection.A prototype MCT and supporting circulating water tank were built to verify the proposed method.The diagnostic results verify that the proposed method has significant recognition ability and detection accuracy for the impact faults of MCTs under variable marine conditions.

ocean energyocean engineeringsignal processingclustering algorithmsfault detectionprincipal component analysis

谢涛、张卫东、张义博

展开 >

上海交通大学电子信息与电气工程学院,上海 200240

海洋能 海洋工程 信号处理 聚类算法 故障检测 主成分分析

国家自然科学基金国家自然科学基金国家自然科学基金

6230330552201369U2141234

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(3)
  • 21