首页|基于FY-4A和机器学习的太阳辐照度超短期预测

基于FY-4A和机器学习的太阳辐照度超短期预测

扫码查看
针对中国西部地区辐射资源充沛但观测资料匮乏的特点,提出一种基于辐照度观测数据、遥感数据、McClear和随机森林算法的太阳辐照度超短期预测方法,并重点分析遥感数据对辐照度预测效果的影响.结果表明:添加遥感数据能够优化不同时间步长的辐照度预测效果,并能显著降低平均绝对百分比误差(MAPE)值高于40%的预测大误差出现概率.同时,添加遥感数据对预测效果的提升随时间步长呈线性增加关系,nRMSE的差值变化范围从2.08%变为13.81%;nMAE的差值从1.64%变化为14.52%;R2的差值随时间步长的变化最为明显,从-0.03变为-0.43.但值得注意的是,添加卫星数据会显著增加模型的建立和超参寻优时间.
NOWCASTING PREDICTION OF SOLAR IRRADIANCE BASED ON FY-4A AND MACHINE LEARNING
In view of the characteristics of abundant radiation resources but lack of observation data in China,this study proposes a short-term solar irradiance forecasting method based on radiation observation data,remote sensing data,McClear,and random forest algorithm,and focuses on analyzing the impact of remote sensing data on radiation forecasting effectiveness.The results show that adding remote sensing data can optimize the forecasting effectiveness at different time horizons and significantly reduce the probability of large prediction errors with a mean absolute percentage error(MAPE)value exceeding 40%.Additionally,the improvement of the forecasting effectiveness with the addition of remote sensing data increases linearly with the time horizon.The difference range of normalized root mean square error(nRMSE)changes from 2.08%to 13.81%,the difference of normalized mean absolute error(nMAE)changes from 1.64%to 14.52%,the difference of R2 shows the most significant change with the time step,changing from-0.03 to-0.43.However,it is worth noting that adding satellite data will significantly increase the time required for model establishment and hyperparameter optimization.

solar irradianceforecastingmachine learningFY-4Aclear sky model

贾东于、李开明、高晓清、高雨濛

展开 >

兰州城市学院城市环境学院,兰州 730070

中国科学院西北生态环境资源研究院/中国科学院寒旱区陆面过程与气候变化重点实验室,兰州 730000

中国人民解放军94754部队,嘉兴 314000

太阳辐照度 预测 机器学习 FY-4A 晴空模型

国家自然科学基金甘肃省教育厅高校教师创新基金甘肃省科技计划

423051282023B-15121JR7RA546

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(4)
  • 24