首页|基于鲁棒稀疏宽度学习系统的短期风电功率预测

基于鲁棒稀疏宽度学习系统的短期风电功率预测

SHORT-TERM WIND POWER PREDICTION BASED ON RUBUST SPARSITY BROAD LEARNING SYSTEM

扫码查看
为改善预测质量,提出一种基于鲁棒稀疏宽度学习系统(RSBLS)的预测方法.基于正则法将模型训练转化为一个difference-of-convex functions优化问题,利用L1 范数作为数据忠诚项以提高估计的鲁棒性,将L1-2 范数集成到目标函数中确保输出权的稀疏性以提升模型性能,并提出一种融合half-quadratic splitting算法优势的数值方法有效求解该训练模型.基于绝对误差、相对误差、平均绝对误差、均方根误差、平均绝对百分误差、算法稳定性、预测误差改进百分比、灰色关联分析和DM检验等准则进行实验分析,结果表明新算法的预测质量优于流行的预测算法,并具有较好的鲁棒性,为风功率预测提出一种可行的新方法.
In order to enhance the prediction accuracy,the robust sparsity broad learning system(RSBLS)prediction method is proposed.The model training is transformed into a difference-of-convex functions optimization problem based on the regularization method.The robustness of the estimation is improved by using the L1 norm as the data fidelity term.The performance of the model is enhanced by integrating the L1-2 norm into the objective function to ensure the sparsity of the output weights.The numerical method that integrates the advantage of the half-quadratic splitting algorithm is proposed to solve the training model efficiently.Experimental analysis based on the criteria of absolute error,relative error,mean absolute error,root mean square error,mean absolute percentage error,algorithm stability,percentage improvement of the performance,gray correlation analysis and DM test shows that the prediction quality of the new algorithm is better than popular prediction algorithms and has better robustness,which provides a new method for wind power prediction.

wind power predictionbroad learning systemregularizationsparsity optimization

康逸群、刘厦、雷兢

展开 >

中国电力科学研究院有限公司,北京 100192

华北电力大学能源动力与机械工程学院,北京 102206

风功率预测 宽度学习系统 正则化 稀疏性优化

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(5)
  • 37