首页|基于一阶ECM-IGPR的锂离子电池SOC及SOH联合估计框架

基于一阶ECM-IGPR的锂离子电池SOC及SOH联合估计框架

扫码查看
为解决锂电池荷电状态与健康状态互相耦合问题,提出一种基于等效电路模型-改进高斯过程回归的锂离子电池荷电状态(SOC)-健康状态(SOH)的联合估计框架.该框架通过提取容量增量曲线中的健康特征,进行主成分分析,然后建立电池老化的改进高斯过程回归模型进行SOH预测.在此基础上,建立锂电池一阶状态空间模型,并结合改进粒子滤波算法对后一周期的SOC更新,实现SOC及SOH的联合长期估计.牛津数据集中的8个电池被用来验证该框架的准确性和适应性,取得了较好的估计结果.
JOINT FIRST ORDER SOC AND SOH ESTIMATION FRAMEWORK FOR LI-ION BATTERY BASED ON ECM-IGPR
State of charge and state of health estimation of Li-ion batteries are important elements of battery management systems,but existing studies usually ignore the association between them and estimating them separately.Therefore,this paper proposes a joint estimation framework of SOC-SOH for Li-ion battery based on Equivalent Circuit Model-Improved Gaussian Process Regression,which updates the SOC estimation with the single-cycle prediction of SOH.The contents are as follow:At first,HFs in the Incremental Capacity curve were extracted and Principal Component Analysis was performed to realize the optimization of HFs.And then the IGPR model for battery aging was developed for SOH prediction.On this basis,the state space model of Li-ion battery was established based on the parameter identification results and capacity estimates,which was combined with the Particle Filter algorithm to update the SOC estimation of the latter cycle.Thus,the joint estimation of SOH and SOC is achieved.Lastly,the eight cells in the Oxford dataset were used to verify the accuracy and adaptability of the framework.Eight batteries from the Oxford dataset are used to validate the accuracy and adaptability of the framework,which achieves good results.

Li-ion batteryincremental capacityjoint state estimateparticle filterGaussian process regression

李谦、姜帆、韩乔妮、张吉昂、程泽、苏展、马伯杨

展开 >

国网天津市电力公司电力科学研究院,天津 300392

中国船舶集团有限公司综合技术经济研究院,北京 100081

天津大学电气自动化与信息工程学院,天津 300072

国网江苏省电力公司苏州供电分公司,苏州 215004

展开 >

锂离子电池 容量增量 联合状态估计 等效电路模型 粒子滤波算法 高斯过程回归

&&

KJ22-1-30

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(5)
  • 34