首页|有源配电网精细化负荷预测软件开发与应用

有源配电网精细化负荷预测软件开发与应用

扫码查看
研究新型有源配电网背景下的精细化负荷预测方法,基于数值天气预报采用卷积神经网络Resnet预测光伏功率,考虑负荷特性和气象影响因素采用GRU算法预测用电负荷,光伏功率发电分量和用电负荷分量的预测结果累加得到有源负荷的精细化预测结果.此外,基于配电云主站设计精细化负荷预测的软件架构和功能模块,开展基于短期负荷预测的配电网动态网络重构研究,考虑负荷时序分段,给出日前24小时的动态优化策略.最后,在某地市配电区域进行算例验证,结果表明:对于含源负荷,精细化负荷预测比直接等值负荷预测结果更准确,基于精细化负荷预测的动态网络重构可降低负荷均衡度并优化光伏消纳.
DEVELOPMENT AND APPLICATION OF REFINED LOAD FORECASTING SOFTWARE FOR ACTIVE DISTRIBUTION NETWORK
Study the refined load forecasting method under the background of the new active distribution network:based on the numerical weather forecast,the convolutional neural network Resnet is used to forecast the photovoltaic power,the GRU algorithm is used to forecast the electrical load considering the load characteristics and meteorological factors,and the refined forecasting results of the active load are obtained by accumulating the forecasting results of the photovoltaic power generation component and the electrical load component.In addition,the software architecture and functional modules of refined load forecasting are designed based on the distribution cloud master station.The research on dynamic network reconfiguration of distribution network based on short-term load forecasting is carried out,and the dynamic optimization strategy of 24 hours ahead of the day is given considering the load sequence segmentation.Finally,through the verification of an example in the distribution area of a city,the results show that the refined load forecasting is more accurate than the direct equivalent load forecasting for the source load,and the dynamic network reconfiguration based on the refined load forecasting can reduce the load balance and optimize the photovoltaic consumption.

PV powerdistribution networksdistributed power generationload forecastingpower forecastingdynamic network reconfiguration

张瑞雪、侯哲帆、倪永峰

展开 >

南瑞集团有限公司(国网电力科学研究院有限公司),南京 211106

北京科东电力控制系统有限责任公司,北京 100192

光伏发电 配电网 分布式发电 负荷预测 功率预测 动态网络重构

国家电网总部管理科技项目国家电网科技项目

5400-202255279A-2-0-XG

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(5)
  • 24