首页|基于PCA-ShapeDTW-QWGRU的分布式光伏集群短期功率预测

基于PCA-ShapeDTW-QWGRU的分布式光伏集群短期功率预测

扫码查看
针对分布式光伏短期功率预测建立基于主成分分析、改进的动态时间规整算法与量子加权门控循环单元(PCA-ShapeDTW-QWGRU)的集群功率预测模型.针对集群划分不够精细、光伏电站数据蕴含的信息难以捕捉的问题,提出基于主成分分析结合密度聚类算法(PCA-OPTICS)的集群划分方法;针对目前选取代表电站与集群相似性较低的问题,提出基于改进的动态时间规整算法(ShapeDTW)的代表电站的选取方法,利用ShapeDTW度量相似性距离,选取最小值作为代表电站,并利用基于均方根传播梯度下降法优化的量子加权门控循环单元(RMSprop-QWGRU)模型进行预测;为了解决代表电站与集群功率的变换系数转换差异较大的问题,采用实时变换系数对代表电站进行集群功率值预测计算.实验结果表明,所提方法能有效提升光伏集群功率预测的精度.
SHORT-TERM POWER PREDICTION FOR DISTRIBUTED PV CLUSTERS BASED ON PCA-SHAPEDTW-QWGRU
A cluster power prediction model based on principal component analysis,shape dynamic time warping and quantum weighted gated recurrent unit(PCA-ShapeDTW-QWGRU)is established for distributed PV short-term power prediction.To address the issue of insufficiently fine cluster division and the difficulty of capturing the information contained in PV plant data,a cluster division method based on PCA with ordering points to identify the clustering structure(PCA-OPTICS)is proposed.Furthermore,to address the issue of low similarity between the selected representative power plants and the clusters,a selection method of representative power plants based on ShapeDTW is proposed,and ShapeDTW measures the similarity of the clusters.ShapeDTW quantifies the similarity distance,identifies the minimum value as the representative power station,and employs the QWGRU model optimised via the root-mean-square propagation(RMSprop-QWGRU)method,to in order to address the discrepancy in the transformation coefficient conversion of the representative power station with the cluster power,real-time transformation coefficients are employed for the prediction calculation of the cluster power value of the representative power station.The proposed method is employed to predict the cluster power value of the representative power station.The experimental results demonstrate that the proposed method can effectively enhance the precision of PV cluster power prediction.

PV power predictionsubgroup divisionprincipal component analysisdynamic time warpingquantum weighted gated recurrent unit

欧阳静、秦龙、王坚锋、尹康、褚礼东、潘国兵

展开 >

特种装备制造与先进加工技术教育部/浙江省重点实验室,浙江工业大学,杭州 310023

浙江华云电力工程设计咨询有限公司,杭州 310014

光伏功率预测 集群划分 主成分分析 动态时间规整 量子加权门控循环单元

浙江省基础公益技术研究计划浙江工业大学研究生教学改革项目

LGF21E0700012022309

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(5)
  • 21