首页|基于光伏发电预测的居住小区建筑高度组合寻优

基于光伏发电预测的居住小区建筑高度组合寻优

扫码查看
以居住小区为研究对象,首先借助Ladybug模拟小区建筑屋面、墙面光伏发电;之后通过机器学习训练出能在0.5 s内预测高度组合不同的整个小区建筑光伏发电量的模型;最后借助遗传算法,以最大建筑光伏发电总量为目标,对小区建筑高度组合进行寻优计算.研究发现:小区内建筑高度的合理组合能有效提升其光伏发电潜力,在建筑高度控制曲面s朝南偏西倾斜且以西南侧为中心下凹时,长沙地区参数化小区能获得最高全年光伏发电量(838297 kWh).对于全国具有不同光气候条件和纬度的地区,通过所提方法可计算出差异性的居住小区最佳高度组合.
OPTIMIZATION OF RESIDENTIAL BUILDING HEIGHT COMBINATION BASED ON PHOTOVOLTAIC POWER GENERATION PREDICTION
This study focuses on residential communities and begins by using Ladybug to simulate photovoltaic generation on rooftops and walls of buildings within the community.Subsequently,a machine learning model is trained to predict the total photovoltaic generation of the entire community with different height combinations within 0.5 seconds.Finally,a genetic algorithm is utilized to optimize the height combinations of the buildings in the community with the objective of maximizing the total photovoltaic generation.The findings indicate that a reasonable combination of building heights can effectively enhance the photovoltaic potential of the community.Specifically,when the building height control surface tilts towards the west-southwest direction and exhibits a concave shape centered on the southwest side,the parameterized community in Changsha achieves the highest annual photovoltaic generation of 838297 kWh.For regions across the country with varying climatic conditions and latitudes,the method described in this study can be used to calculate optimal height combinations for residential communities.

solar energyphotovoltaic powermachine learninggenetic algorithmsarchitectural design

杨瑛、胡楼君、高青、刘柱梁

展开 >

中建五局设计研究总院,长沙 410000

中建五局设计技术科研院,长沙 410004

太阳能 光伏发电 机器学习 遗传算法 建筑设计

中建股份科技研发课题中建五局科技研发课题

CSCEC-2022-Z-10cscec5b-2022-09

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(5)
  • 14