首页|基于特征选择和XGBoost算法考虑极端天文、气象事件影响的光伏性能预测方法

基于特征选择和XGBoost算法考虑极端天文、气象事件影响的光伏性能预测方法

扫码查看
以Pearson's r特征选择方法进行参数相关性判断后,构建分析决策树指数模型,提高水平面总辐射的预测精度,通过气象参数的主成分提取,实现训练集降维.采用XGBoost算法构建预测模型,加入正则项控制模型的复杂度,降低过拟合率,提高模型对未知数据的适应能力.通过泰勒展开将损失函数的选取和算法优化过程去耦合,实现极端天文、气象条件下光伏电站性能的预测和模型评估.预测结果与实测值对比表明,所提预测法能自动学习缺失值的处理策略,支持多种类型的基分类器,有广泛的优化空间.在针对光伏功率Pw、系统效率PR、产能利用率CF的预测平均绝对百分比误差在15%以内,显示出良好的预测准确度和稳定性.
FORECASTING METHOD OF PHOTOVOLTAIC POWER GENERATION BASED ON FEATURE SELECTION AND XGBOOST ALGORITHM CONSIDERING INFLUENCE OF EXTREME ASTRONOMICAL AND METEOROLOGICAL EVENTS
After the parameter correlation was judged by Pearson's r feature selection method,the analysis decision tree index model was built to improve the prediction accuracy of the total horizontal radiation intensity,and the dimensionality reduction of the training set was realized through the principal component extraction of meteorological parameters.XGBoost algorithm is used to construct the prediction model,adding regular terms to control the complexity of the model,reducing the overfitting rate and improving the adaptability of the model to unknown data.By means of Taylor expansion,the selection of loss function and algorithm optimization process are decoupted,and the performance prediction and model evaluation of photovoltaic power stations under extreme astronomical and meteorological conditions are realized.The comparison between the predicted results and the measured values shows that the proposed method can automatically learn the missing value processing strategy,support various types of base classifiers,and have a wide range of optimization space.This model has good prediction accuracy and stability,as the average absolute percentage error in predicting photovoltaic power Pw,Performance ratio(PR),and capacity utilization factor(CF)is within 15%.

feature selectionprincipal component analysismachine learningphotovoltaic powercombination forecasting

王瑶、吴云来、俞铁铭、胡华友、李明光

展开 >

浙江正泰智维能源服务有限公司,杭州 310051

浙江正泰新能源开发有限公司,杭州 310051

特征选择 主成分分析 机器学习 光伏发电 组合预测

工信部工业互联网平台测试床建设项目浙江省"尖兵""领雁"研发攻关计划

TC19083W82022C01161

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(5)
  • 31