首页|引入注意力机制的LSTM-FCN海上风电功率预测

引入注意力机制的LSTM-FCN海上风电功率预测

扫码查看
提出一种注意力机制与LSTM-FCN网络结合的海上风电预测模型,在数据中引入风切变物理量来更准确地预测海上风电发电功率.选用公共数据集网站Zenodo内某海上风电场数据中2组风力机数据进行分析和预测验证.对数据集进行标准化预处理后,用AMLSTM-FCN网络和CNN网络、LSTM网络、LSTM-FCN网络进行对比实验,其中AMLSTM-FCN网络在2份风力机数据预测中,RMSE、MAPE、MAE分别为:5号风力机:6.9434、14.01%、48.6636,6号风力机:2.6933、7.12%、17.2536,在相同时段上采用去除风切变的数据训练网络,得到的预测结果从4个指标中看出预测准确度下降.实验表明AMLSTM-FCN网络在海上风电功率预测中有更高的预测精度,以及风切变也对海上风电功率有显著影响.
LSTM-FCN OFFSHORE WIND POWER FORECASTING WITH INTRODUCTION OF ATTENTION MECHANISM
An offshore wind power prediction model combined with LSTM-FCN network is proposed,in which wind shear physical quantities are introduced into the data to more accurately predict offshore wind power generation.Two sets of wind turbine data from an offshore wind farm data website in Zenodo were selected for analysis and prediction verification.After standardized preprocessing of the dataset,AMLSTM-FCN network and CNN network,LSTM network,LSTM-FCN network were used to do the comparison experiments,in which AMLSTM-FCN network was predicted in 2 wind turbine data,RMSE,MAPE,MAE are respectively for No.5 wind turbine:6.9434,14.01%,48.6636,for No.6 wind turbine:2.6933,7.12%,17.2536,the data training network without wind shear data is used in the same time period.The obtained prediction results show that the prediction accuracy decreases from the four indexes.Experiments show that AMLSTM-FCN networks have higher prediction accuracy in offshore wind power prediction,and wind shear also has a significant impact on offshore wind power.

offshore wind powerpower forecastingattention mechanismartificial neural networkwind shear

张昊立、张菁、倪建辉、陈龙、高典

展开 >

上海工程技术大学电子电气工程学院,上海 201620

海上风电 功率预测 注意力机制 人工神经网络 风切变

国家自然科学基金

61803255

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(6)