首页|基于改进YOLOv4的风力机叶片损伤检测方法

基于改进YOLOv4的风力机叶片损伤检测方法

扫码查看
针对深度卷积神经网络模型因复杂度高导致嵌入式设备难以实现在线检测的问题,提出改进的YOLOv4的风力机叶片损伤检测方法.首先使用MobileNetv3网络代替YOLOv4中的CSPdarknet53主干特征提取网络进行特征提取,并将相同shape的特征层进行加强特征提取;其次在加强特征提取网络上添加注意力机制ECA,并对YOLOv4的边界框损失函数与分类损失函数进行优化;最后,将改进前后的算法与其他检测算法进行比较.结果表明:改进的YOLOv4算法的检测速度可达单张检测时间为0.018 s,检测准确率达到95.7%,通过对YOLOv4网络进行改进,在保证检测准确的前提下,轻量化的模型可满足嵌入式设备检测风力机叶片损伤的需求.
WIND TURBINE BLADE DAMAGE DETECTION METHOD BASED ON IMPROVED YOLOv4
An improved YOLOv4 wind turbine blade damage detection method is proposed to solve the problem that on-line detection of embedded equipment is difficult due to high complexity of deep convolution neural network model.Firstly,MobileNetv3 network is used to replace CSPDknet53 backbone feature extraction network in YOLOv4 for feature extraction,and feature extraction is enhanced by feature layer of the same shape.Secondly,an attention mechanism ECA is added to the enhanced feature extraction network,and the loss function of YOLOv4 boundary frame and the loss function of classification are optimized.Finally,the improved algorithm is compared with other detection algorithms.The result shows that the detection speed of the improved YOLOv4 algorithm can reach 0.018 seconds per sheet and the detection accuracy reaches 95.7%.Through improving the YOLOv4 network,the lightweight model can meet the requirement of embedded equipment to detect wind turbine blade damage on the premise of accurate detection.

wind turbinesbladesdamage detectiondeep learningYOLOv4

邹龙洲、王文韫、郭迎福、杨景云

展开 >

湖南科技大学机电工程学院,湘潭 411201

湖南科技大学机械设备健康维护湖南省重点实验室,湘潭 411201

风力机 叶片 损伤检测 深度学习 YOLOv4

中央引导地方科技发展资金项目湖南省自然科学基金区域联合基金湖南省教育厅科学研究项目

2022ZYT0122023JJ5023422B0465

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(7)
  • 5