首页|计及改进粒子群算法优化BP神经网络的沼气产量软测量预测模型

计及改进粒子群算法优化BP神经网络的沼气产量软测量预测模型

扫码查看
为准确预测大中型沼气工程的日产气量,提出一种利用基于PSO-BP模型的软测量方法.首先,依托软测量技术选取参数;其次,以进料量、发酵温度、液位、罐内液压等参数作为输入量,沼气日产量为输出量进行模型建立.在此基础上,使用线性降低权重系数法和引入变异算子对粒子群算法进行改进,并对BP神经网络进行初始化来提高模型性能.通过实验比较改进PSO-BP模型、传统BP神经网络以及遗传算法优化的BP神经网络在预测沼气日产量方面的性能,采用改进的PSO-BP模型进行预测时,均方根误差(RMSE)、决定系数(R2)和平均绝对误差(MAE)分别为1.38440、0.84011和1.00910,证明改进PSO-BP模型结合软测量技术对进行复杂非线性牛粪高温厌氧发酵过程预测的可行性,同时可保证预测结果的精准性.
SOFT MEASUREMENT PREDICTION MODEL OF BIOGAS PRODUCTION BAESD ON IMPROVED PARTICLE SWARM OPTIMIZATION BP NEURAL NETWORK
The high-temperature anaerobic fermentation system of cow dung involves complex dynamics,with serious nonlinearity and time-varying,which makes it difficult to construct an accurate prediction model of biogas production.In order to accurately predict the daily gas production of large and medium-sized biogas projects,a new method of using improved particle swarm optimization algorithm to optimize traditional BP neural network was proposed,and an improved PSO-BP model was established.Firstly,the parameters are selected by soft measurement technology.Secondly,the model was established by taking the parameters such as feed rate,fermentation temperature,liquid level and hydraulic pressure in the tank as input and the daily biogas production as output.On this basis,the particle swarm optimization algorithm is improved by using the linear reduction weight coefficient method and introducing the mutation operator,and the BP neural network is initialized to improve the performance of the model.The performance of the improved PSO-BP model,the traditional BP neural network and the BP neural network optimized by genetic algorithm in predicting the daily biogas production was compared through experiments.When the improved PSO-BP model was used for prediction,the root mean square error(RMSE),the coefficient of determination(R2)and the mean absolute error(MAE)were 1.38440,0.84011 and 1.00910,respectively.It is proved that the improved PSO-BP model combined with soft measurement technology is feasible to predict the complex nonlinear high temperature anaerobic fermentation process of cow dung,and the accuracy of the prediction results is ensured.

biomass energybiogasparticle swarm optimization algorithmBP neural networksoft-sensing technique

于雪彬、贾宇琛、高立艾、周加栋、霍利民

展开 >

河北农业大学机电工程学院,保定 071001

河北省畜禽养殖智能装备与新能源利用重点实验室,保定 071001

河北聚碳生物科技有限公司,衡水 053000

生物质能 沼气 粒子群优化算法 BP神经网络 软测量技术

河北省重点研发计划

20327307D

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(8)
  • 13