首页|逆向云灰色关联相似日的EEMD-RL-GWO-LSTM区域风光功率短期预测

逆向云灰色关联相似日的EEMD-RL-GWO-LSTM区域风光功率短期预测

扫码查看
针对现有方法在风光预测时气象因素考虑不全面且未考虑风光功率关联性的问题,提出一种风光功率短期预测方法.首先,以云模型表征风光出力不确定性,逆向云结合灰色关联度分析不同气象特征对输出功率的影响程度,并设立选取标准及综合评分指标;其次,采用集合经验模态分解(EEMD)将选取相似日的功率数据分解为子序列;最后,将子序列和气象数据作为基于折射学习策略(RL)的灰狼算法(GWO)优化的改进长短期记忆网络(LSTM)模型的预测输入进行训练,对待预测日的子序列分别预测,并叠加得到短期区域风光发电功率的预测.以中国西北某风光联合电场数据为例,对该模型进行验证,结果表明,相比于现有预测模型,该文所提方法考虑了天气因素,具有较高的预测精度,能够较好地为区域风光联合电场的功率预测提供参考.
SHORT-TERM PREDICTION OF REGIONAL WIND-SOLAR POWER OF EEMD-RL-GWO-LSTM ON REVERSE CLOUD GREY CORRELATION SIMILAR DAYS
Aiming at the problems of incomplete consideration of meteorological factors and non-consideration of wind-solar power correlation in wind-solar power prediction by existing methods,a short-term prediction method of wind-solar power is proposed.Firstly,the cloud model is used to characterize the uncertainty of wind-solar output,and the influence of different meteorological characteristics on the output power is analyzed by the reverse cloud combined with the grey correlation degree,and the selection criteria and comprehensive scoring index are set up.Secondly,the power data of similar days are decomposed into subsequences by ensemble empirical mode decomposition(EEMD);Finally,the sub-sequences and meteorological data are trained as the forecast inputs of the improved long and short term memory network(LSTM)model optimized by the grey wolf algorithm(GWO)based on refraction learning strategy(RL).The sub-sequences of the forecast days are predicted separately and superimposed to obtain the prediction of the short-term regional wind-solar power.The designed model is verified by the data of a certain wind-solar farm located in northwest China.The experimental results show that,compared with the existing prediction models,the proposed method takes into account the weather factor,has high prediction accuracy,and can better provide a reference for the power prediction of regional wind-scenic combined farms.

reverse cloud grey correlation similar daysensemble empirical mode decomposition(EEMD)RL-GWO-LSTM neural networkshort-term wind-solar power prediction

张宇华、时鑫洋、颜楠楠、王育飞、薛花

展开 >

上海电力大学电气工程学院,上海 200090

复旦大学类脑智能科学与技术研究院,上海 200433

国网华东电力试验研究院,上海 200437

逆向云灰色关联相似日 集合经验模态分解 RL-GWO-LSTM神经网络 短期风光功率预测

上海市科委地方院校能力建设计划

22010501400

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(10)