首页|基于CNN和BiLSTM神经网络模型的太阳能供暖负荷预测研究

基于CNN和BiLSTM神经网络模型的太阳能供暖负荷预测研究

RESEARCH ON SOLAR HEATING LOAD FORECASTING BASED ON CNN AND BILSTM NEURAL NETWORK MODEL

扫码查看
针对太阳能供暖系统中因热量供需不匹配而引起的能源浪费现象,提出一种基于卷积神经网络-双向长短期记忆神经网络的短期热负荷预测模型.首先对数据进行清洗,使数据准确完整;其次依据皮尔逊相关系数对输入特征进行筛选;最后依据其空间-时间特征建立卷积神经网络-双向长短期记忆神经网络模型.在与单一神经网络模型长短期记忆神经网络及双向长短期记忆神经网络进行详细比较和分析后,结果表明,该模型相较于传统神经网络模型在精确度上存在明显提升,验证了本模型在太阳能供暖负荷预测中的有效性.
Aiming at the phenomenon of energy waste caused by the mismatch between heat supply and demand in solar heating system,a short-term heat load forecasting model based on convolutional neural network-bidirectional long short-term memory neural network is proposed.Firstly,the data is cleaned to make the data accurate and complete.Secondly,the input features are screened according to the Pearson correlation coefficient.Finally,a convolutional neural network-bidirectional long-term and short-term memory neural network model is established based on its spatial-temporal characteristics.After detailed comparison and analysis with the single neural network model,the length of the memory neural network and the two-way long short-term memory neural network,the results show that the model has a significant improvement in accuracy compared with the traditional neural network model,which verifies the effectiveness of the model in the prediction of solar heating load.

solar heatingconvolutional neural network(CNN)long short-term memory(LSTM)thermal loadneural network model

周泽楷、侯宏娟、孙莉、靳涛

展开 >

新能源电力系统国家重点实验室(华北电力大学),北京 102206

太阳能供暖 卷积神经网络 长短期记忆网络 热负荷 神经网络模型

国家重点研发计划北京市自然科学基金国家自然科学基金重大项目

2021YFE0194500322204252090064

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(10)