首页|基于CBAM-DSC-UNet模型的时空风速预测算法

基于CBAM-DSC-UNet模型的时空风速预测算法

扫码查看
针对时空风速预测任务通常使用的卷积神经网络(CNN)和循环神经网络(RNN)联合建模方法中空间信息损失的问题,提出一种基于CBAM-DSC-UNet模型的时空风速预测算法,用于提升空间信息利用率与模型预测精度.该算法将时空风速预测问题视为视频预测问题,在提取时空相关性的同时保持空间信息,进而直接输出未来多步的空间风速矩阵.以美国怀俄明州某风电场实际数据为算例进行实验,结果表明,相比其他对比算法,基于CBAM-DSC-UNet模型的时空风速预测算法的平均绝对误差下降8.4%~15.9%,精度有较大提升.
SPATIO-TEMPORAL WIND SPEED PREDICTION ALGORITHM BASED ON CBAM-DSC-UNet MODEL
In response to the problem of spatial information loss in the joint modeling methods of convolutional neural networks(CNN)and recurrent neural networks(RNN)commonly used for spatial-temporal wind speed prediction tasks,we propose a spatial-temporal wind speed prediction algorithm based on the CBAM-DSC-UNet model.This algorithm aims to enhance the utilization of spatial information and improve the accuracy of model predictions.We treat the spatial-temporal wind speed prediction problem as a video prediction problem in order to preserve spatial information while extracting spatial-temporal correlations,thereby directly outputting the spatial wind speed matrix for multiple future steps.We conducted a calculating using actual data from a wind farm in Wyoming,USA as a case study.The results show that to other algorithms,the average absolute error of the spatial-temporal wind speed prediction algorithm based on the CBAM-DSC-UNet model reduces by 8.4%to 15.9%,demonstrating a significant improvement in prediction accuracy.

wind forecastingconvolutional neural networksspatial-temporal dataUNetmulti-wind turbine units

赵陆阳、刘长良、刘卫亮、李洋、王昕、康佳垚

展开 >

华北电力大学控制与计算机工程学院,北京 102206

保定市综合能源系统状态检测与优化调控重点实验室,保定 071000

国家能源集团新能源技术研究院有限公司,北京 102209

风力预测 卷积神经网络 时空数据 UNet 多风电机组

国家自然科学基金中央高校基本科研业务费中央高校基本科研业务费中央高校基本科研业务费

622031722023JG0052020JG0062020MS117

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(10)