首页|基于迁移学习的风电机组叶片损伤检测与分析

基于迁移学习的风电机组叶片损伤检测与分析

扫码查看
针对风电机组叶片损伤成因复杂、故障识别效率低、精度不足等问题,提出一种基于迁移学习改进的DenseNet网络(DenseNet-TL)的风电机组叶片损伤检测方法.建立DenseNet-TL数学模型,提升特征提取能力,在该模型下对风电机组叶片图像进行识别分析,以确定叶片的损伤状态.以某风场数据集进行离线训练和测试,结果表明:与AlexNet、ResNet模型进行对比,该模型可有效节省训练时间、提高模型的泛化能力,训练准确度平均值达到90%以上,验证了该方法的有效性和精确性.
WIND TURBINE BLADE DAMAGE DETECTION AND ANALYSIS BASED ON TRANSFER LEARNING
Aiming at the problems of complex causes of wind turbine blade damage,low fault identification efficiency,and insufficient accuracy,a wind turbine blade damage detection method is propsed based on improved DenseNet network improved by transfer learning is proposed.A mathematical model of DenseNet network improved by transfer learning(DenseNet-TL)is established to improve the feature extraction capability,and the recognition and analysis of wind turbine blade images are carried out under the model to determine the damage state of the blades.The offline training and testing is carried out with a wind farm dataset,and the results show that,compared with AlexNet and ResNet models,the model effectively saves the training time,improves the generalization ability of the model,and the average training accuracy reaches more than 90%,which verifies the validity and accuracy of the method.

transfer learningimage recognitiondamage detectionwind turbine bladeswind turbines

殷孝雎、潘雪、左雁斌、关新

展开 >

沈阳工程学院新能源学院,沈阳 110136

华能辽宁清洁能源有限责任公司,沈阳 110180

迁移学习 图像识别 损伤检测 风电机组叶片 风电机组

辽宁省科技厅重点项目2021年辽宁省教育厅科研项目辽宁省自然基金资助计划项目

LJKZ1088XNLG2130BL2204

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(10)