首页|基于CEEMDAN和时间卷积网络的风向预测算法

基于CEEMDAN和时间卷积网络的风向预测算法

扫码查看
为提高风向预测精度,提出一种基于随机森林算法(RF)、分类回归树(CART)、完备自适应噪声经验模态分解(CEEMDAN)与时间卷积网络(TCN)的组合预测算法.其中,基于分类回归树法的输入重要性评测用于评测风向预测模型的输入相关度并进行筛选;随机森林算法用于对风向数据进行自适应处理;完备自适应噪声集成经验模态分解用于对输入风向数据进行分解并进行输入信息特征提取;最后,利用时间卷积网络搭建风向预测模型.实验结果表明,相较于其他8种对比模型,所提模型在四季度数据集上预测误差均小于4.95°,均获得了最高的预测精度.
WIND DIRECTION PREDICTION ALGORITHM BASED ON CEEMDAN AND TIMPORAL CONVOLUTIONAL NETWORK
In order to improve the accuracy of wind direction prediction,a combined prediction algorithm based on decision tree method(CART),random forest algorithm,complete adaptive noise empirical mode decomposition(CEEMDAN)and temporal convolutional network(TCN)is proposed.Among them,the input importance evaluation based on decision tree method is used to evaluate and screen the input relevance of wind direction perdiction models.Randon forest algorithm is used to classify and process wind direction data;The complete adaptive noise integrated empirical mode decomposition is used to decompose the input wind direction data and extract the input information features;Finally,the temporal convolutional network is used to build the wind direction prediction model.The experimental results show that compared to the other eight comparison models,the prediction errors of the proposed model for wind direction in the fourth quarter data set are less than 4.95°,and the highest prediction accuracy is achieved.

deep learningfeature extractionrandom foresttemporal convolutional networkwind direction prediction

张群、侯玉强、许剑冰、赵巍、李威、刘福锁

展开 >

国网电力科学研究院有限公司,南京 211106

深度学习 特征提取 随机森林 时间卷积网络 风向预测

国家自然科学基金

U22B6008

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(10)