首页|青海高原光伏适宜性评价的不同决策树算法的比较研究

青海高原光伏适宜性评价的不同决策树算法的比较研究

扫码查看
以青海高原为例,通过野外调查和整合谷歌图像的方式,收集185个光伏站点位置信息.在此基础上,对比分类与回归树(CART)、随机森林(RF)和极端梯度提升(XGBoost)这3种机器学习算法,采用受试者工作特征(ROC)曲线和统计指标对模型质量进行检验.结果表明:XGBoost具有较高的预测性能,对噪声数据具有较强的适应性,总体表现优于其他模型.太阳总辐射、与电网的距离和与道路的距离是影响光伏电站选址的主要影响因子.3个模型生成的光伏适宜性图显示,非常适宜区域主要分布在柴达木盆地和共和盆地,非常适宜和较适宜区占研究区总面积的15.31%和16.33%.
COMPARATIVE STUDY OF DIFFERENT DECISION TREE ALGORITHMS FOR PV SUITABILITY EVALUATION IN QINGHAI PLATEAU
Taking the Qinghai Plateau as an example,a total of 185 photovoltaic sites positional information are collected through field investigation and integration of Google Images.Based on this dataset,three machine learning algorithms,namely Classification and Regression Tree(CART),Random Forest(RF),and Extreme Gradient Boosting(XGBoost),are compared and evaluated for their predictive performance is assesed using ROC curves and statistical indicators.The results reveal that XGBoost demonstrates superior predictive performance and robust adaptability to noisy data,overall outperforms the other models.Factors such as total solar radiation,distance from the power grid,and distance to roads are identified as the key factors influencing the location of photovoltaic power stations.The PV suitability maps generated by the three models indicate that the highly suitable areas are primarily distributed in the Qaidam Basin and Gonghe Basin.The highly suitable and relatively suitable areas account for 15.31% and 16.33% of the total area of the study area,respectively.

photovoltaic power stationzoningresource valuationmachine learningQinghai PlateauArcGIS

张玉冰、申彦波、姚鑫、周雅文、俞文政

展开 >

南京信息工程大学地理科学学院,南京 210044

中国气象局公共气象服务中心,北京 100081

中国气象局风能太阳能资源研究中心,北京 100081

光伏电站 分区 资源评估 机器学习 青海高原 ArcGIS

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(12)