首页|基于自注意力特征提取的光伏功率组合概率预测

基于自注意力特征提取的光伏功率组合概率预测

扫码查看
为准确预测光伏出力的概率分布,提出一种基于自注意力机制特征提取的光伏功率组合概率预测方法,可以弥补传统线性组合预测方法在信息利用率及灵活性等方面的缺陷.首先构建兼具同质模型与异质模型的概率预测模型池,之后通过基于自注意力机制的特征提取模块对基模型预测结果进行自适应特征提取,最后将外部特征与所提取基模型特征一并输入残差全连接网络中,以预测分位数增量的形式实现单调分位数预测.基于公开光伏数据集进行算例分析,相关算例结果表明,相较于个体模型及传统线性组合方法,所提方法在概率预测方面具有更好的综合表现.
COMBINING PROBABILISTIC PREDICTION OF PV POWER BASED ON SELF-ATTENTION FEATURE EXTRACTION MECHANISM
To accurately predict the probability distribution of photovoltaic output,this paper proposes a novel approach for probabilistic forecasting of photovoltaic power based on self-attention feature extraction mechanism.This method addresses the limitations of traditional linear combining prediction methods in terms of information utilization and flexibility.Firstly,a model pool is constructed which includes both homogeneous models and heterogeneous models.Subsequently,a feature extraction module based on self-attention mechanism is employed to adaptively extract features from the predictions of the base models.Lastly,the extracted features from the base models and the external features are input into a residual fully-connected network to achieve monotonic quantile prediction through quantile increment prediction.Experimental analysis using publicly available photovoltaic datasets demonstrates that the proposed method outperforms individual models and traditional linear combination methods in terms of overall performance.

photovoltaic powerprobabilistic predictionself-attentioncombination predictionresidual connectionquantile prediction

王家乐、张耀、林帆、周一丹、孙乾皓

展开 >

西安交通大学电气工程学院 陕西省智能电网重点实验室,西安 710049

光伏功率 概率预测 自注意力 组合预测 残差连接 分位数预测

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(12)