首页|基于改进YOLOv5算法的光伏缺陷检测

基于改进YOLOv5算法的光伏缺陷检测

扫码查看
针对以往光伏缺陷检测中可识别缺陷的种类少、无法对缺陷进行定位、模型参数多体积大以及检测速度慢的局限性,改进传统的YOLOv5网络对光伏组件面板图像中常见的裂纹、断栅、黑芯、粗线和热斑5类主要缺陷进行检测和分类.使用3种不同的注意力机制模块:CA注意力机制模块、ECA注意力机制模块、CBAM注意力机制模块,分别融入YOLOv5网络中进行对比分析实验,发现CA注意力机制更加适合光伏缺陷图像检测.随后对融入CA注意力机制模块的YOLOv5算法再次加入双向特征金字塔网络结构,进一步加强网络的特征融合能力.实验结果表明,该模型可对5类常见的缺陷进行有效的识别和定位,与YOLOv5算法相比平均精准度(mAP)值提升3.7%,模型体积减小15%,图片的检测平均速度提升9.7%.结论表明该方法可有效增强YOLOv5算法在光伏缺陷检测中的能力,同时可降低深度学习算法在光伏检测中误检和漏检的情况.
PHOTOVOLTAIC DEFECT DETECTION BASED ON IMPROVED YOLOv5 ALGORITHM
Aiming at the limitations of the previous PV defect detection,such as fewer types of recognizable defects,multiple model parameters,large volume of model parameters,and slow detection speed,the traditional YOLOv5 network is improved to detect and classify the five main types of defects,namely,cracks,broken grids,black cores,thick wires,and hot spots that are commonly found in the images of photovoltaic panels.Three different attention mechanism modules:CA attention mechanism module,ECA attention mechanism module,and CBAM attention mechanism module,are integrated into the YOLOv5 network for comparative analysis experiments,and it is found that the CA attention mechanism is more suitable for PV defect image detection.Subsequently,the YOLOv5 algorithm incorporating the CA attention mechanism module is added to the bidirectional feature pyramid network structure further to strengthen the feature fusion capability of the network.The experimental results show that the model can effectively identify and localize five types of common defects,and compared with the YOLOv5 algorithm,the Map(Mean Average Precision)value is improved by 3.7%,the model volume is reduced by 15%,and the average speed of the detection of the images is improved by 9.7% .The overall conclusion shows that the method effectively enhances the ability of YOLOv5 algorithm in PV defect detection,and at the same time reduces the misdetection and omission of the deep learning algorithm in PV detection.

computer visiondeep learningsolar cellsYOLOv5photovoltaic defects

王育欣、张志、张家亮、韩江宁、连建国、祁一峰

展开 >

天津农学院计算机与信息工程学院,天津 300380

联通视频科技有限公司,天津 300132

天津华大科技有限公司,天津 301799

计算机视觉 深度学习 太阳电池 YOLOv5 光伏缺陷

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(12)