首页|基于LSTM的10 MW海上风力机故障传感器数据重构研究

基于LSTM的10 MW海上风力机故障传感器数据重构研究

扫码查看
为解决极端环境传感器故障导致监测数据不充足问题,该文采用长短期记忆神经网络(LSTM)智能算法进行数据重构.鉴于海上风电监测数据稀缺,该文的研究依托数值仿真结果开展.基于作者团队开发的"气动-水动-结构-桩土-智能控制"一体化耦合分析软件Zwind,首先开展10 MW大型风力机全工况仿真分析,并通过提取多个高度处的加速度和倾角响应构建数据库,用以模拟多种风力机塔筒传感器故障导致的数据丢失状况.然后基于LSTM建立风力机塔筒加速度和倾角的数据重构模型,训练并验证所构建的数据重构模型的精度.最后在数个未布置传感器的位点上检验LSTM数据重构模型的泛化性能.结果表明:构建的LSTM故障传感器数据重构模型,可基于有限位点的正常服役传感器的监测数据高精度地重构故障传感器以及未测位点的塔筒响应数据;此外,基于倾角响应的重构结果比基于加速度响应的重构结果精度更高.
FAULT SENSOR DATA RECONSTRUCTION OF 10 MW OFFSHORE WIND TURBINE BASED ON LSTM
To solve the problem of insufficient monitoring data caused by sensor failures in extreme environments,this study proposes an AI-driven offshore wind power monitoring data reconstruction method.In view of the scarcity of offshore wind turbine monitoring data,this study is conducted using numerical simulations results.Based on the aero-hydro-elasto-servo integrated design software Zwind,developed by the authors'team,this study first carries out numerical simulations of a 10MW wind turbine considering all loading cases,and extracts accelerations and inclinations to form the database for a series of data loss situations caused by sensor failures.Then,a data reconstruction model is proposed based on LSTM using acceleration response or inclination response of wind turbine tower,following by its training and verification.Finally,the generalization performance of the LSTM data reconstruction model is investigated on the locations without sensors.The results show that 1)the proposed data reconstruction model can accurately reconstruct the data of fault sensors on wind turbine tower and predict the responses of unmeasured locations using the monitoring data at limited locations;2)the reconstruction results based on inclination response are more accurate than acceleration response.

offshore wind turbinesstructural health monitoringdeep learningsensor failuredata reconstructioninclination response

邱子琪、王立忠、潘华林、张宝龙、王立林、洪义

展开 >

浙江大学海洋学院,舟山 316021

浙江大学海南研究院,三亚 572025

浙江省能源集团有限公司,杭州 310000

东海实验室,舟山 316021

展开 >

海上风力机 结构健康监测 深度学习 故障传感器 数据重构 倾角响应

2024

太阳能学报
中国可再生能源学会

太阳能学报

CSTPCD北大核心
影响因子:0.392
ISSN:0254-0096
年,卷(期):2024.45(12)