首页|基于DT-SVM优化算法的人体姿态特征提取与识别研究

基于DT-SVM优化算法的人体姿态特征提取与识别研究

扫码查看
为确定人体运动行为在空间环境中的表现情况,实现对姿态特征的准确定义,针对基于DT-SVM优化算法的人体姿态特征提取与识别方法展开研究.利用DT-SVM优化算法,推荐必要的姿态特征节点,确定人体运动行为所处空间平面.实施对姿态特征的梯度化处理,根据获取到的轮廓节点,计算夹角向量的具体数值,从而求解姿态特征提取与识别的数学表达式,完成基于DT-SVM优化算法的人体姿态特征提取与识别方法的设计.实验结果表明,上述方法的应用,可同时在X轴、Y轴、Z轴三个方向上,控制人体运动行为,使其偏向角数值均不超过12°,符合精准定义人体姿态特征的实际应用需求.
Esearch on Human Posture Feature Extraction and Recognition Based on DT-SVM Optimization Algorithm
In order to determine the performance of human motion behavior in the spatial envi-ronment and achieve accurate definition of posture features,research has been conducted on the extrac-tion and recognition methods of human posture features based on the DT-SVM optimization algo-rithm.Using the DT-SVM optimization algorithm,recommend necessary pose feature nodes to deter-mine the spatial plane where human motion behavior is located.Implement gradient processing of pos-ture features,calculate the specific value of the angle vector based on the obtained contour nodes,and solve the mathematical expression for posture feature extraction and recognition.Complete the design of a human posture feature extraction and recognition method based on DT-SVM optimization algo-rithm.The experimental results show that the application of the above method can simultaneously con-trol human motion behavior in the X axis,Y axis,and Z axis directions,so that the deviation angle val-ues do not exceed 12°,which meets the practical application requirements of accurately defining hu-man posture features.

DT-SVM optimization algorithmhuman posturefeature extractionfeature rec-ognitiongradient processingcontour nodesangle vectorsports behavior

丁晓慧、周磊

展开 >

淮北理工学院电子与信息工程学院,安徽淮北 235000

DT-SVM优化算法 人体姿态 特征提取 特征识别 梯度化处理 轮廓节点 夹角向量 运动行为

安徽省高校自然科学研究重点项目安徽省高校优秀人才支持项目基金项目

KJ2021A1246gxyq2022179

2024

太原师范学院学报(自然科学版)
太原师范学院

太原师范学院学报(自然科学版)

影响因子:0.127
ISSN:1672-2027
年,卷(期):2024.23(1)
  • 15