首页|模态分解及混合模型在比特币价格预测中的应用

模态分解及混合模型在比特币价格预测中的应用

扫码查看
独特的生产、发行和交易机制等多种因素的影响下,比特币价格表现出极端的波动性,导致了预测任务的复杂性.为此提出了基于改进的自适应噪声完备集合经验模态分解(ICEEMDAN)的混合预测模型,将复杂的原始序列分解成多个简单固有模态函数(IMFs),并通过重构算法将IMFs集成为不同频率的分量.根据各分量的不同数据模式,选取不同机器学习模型分别进行预测,叠加各分量预测结果得到最终比特币价格预测结果.对比结果表明,该模型在各评价指标上均优于单一预测模型,混合模型可以优化预测结果,较好地减小预测误差.
Mode Decomposition and Hybrid Modeling in Bitcoin Price Prediction
The unique production,issuance,and trading mechanisms,among many other fac-tors,have led to extreme volatility in the Bitcoin price,leading to the complexity of the forecasting task.A hybrid prediction model based on Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(ICEEMDAN)is proposed,which decomposes a complex original sequence into multiple simple intrinsic mode functions(IMFs)and sets the IMFs into components of different fre-quencies by a reconstruction algorithm.According to the different data patterns of each component,dif-ferent machine learning models are selected to make predictions separately,and the prediction results of each component are superimposed to get the final bitcoin price prediction results.The comparison re-sults show that the model is better than the single prediction model in each evaluation index,and the hybrid model can optimize the prediction results and reduce the prediction error better.

Bitcoin price forecastimproved empirical mode decompositionhybrid modelma-chine learning

周健、刘辉

展开 >

安徽财经大学管理科学与工程学院,安徽蚌埠 233030

北京邮电大学计算机学院,北京 100876

比特币价格预测 改进经验模态分解 混合模型 机器学习

2024

太原师范学院学报(自然科学版)
太原师范学院

太原师范学院学报(自然科学版)

影响因子:0.127
ISSN:1672-2027
年,卷(期):2024.23(3)