首页|深度卷积网络环境下基于插值算法的图像融合研究

深度卷积网络环境下基于插值算法的图像融合研究

扫码查看
针对现有图像融合算法融合效果差、效率较低的不足,在深度卷积网络环境下提出一种图像插值算法.先对原始图像进行滤波、分割等预处理,使图像具备融合的可能性;然后构建深度卷积神经网络,为提升训练性能,采用了双卷积层和池化层的结构设计,同时选用Tanh激活函数提升模型泛化能力;基于方差梯度建模,并采用邻域像素法插值,使融合后的图像像素平滑过渡,强化了融合图像的细节并改善图像的质量.实验结果显示:提出算法的图像融合质量评估指标均优于传统融合算法,且处理训练集和测试集的耗时更短.
Research on Image Fusion Based on Interpolation Algorithm in Deep Convolutional Network Environment
Aiming at the shortcomings of the existing image fusion algorithms,an image inter-polation algorithm is proposed in the deep convolutional network environment.Firstly,the original im-age is preprocessed by filtering,segmentation,etc.,so that the image has the possibility of fusion;Then the deep convolutional neural network is constructed.In order to improve the training performance,the structure design of double convolutional layer and pool layer is adopted,and the Tanh activation func-tion is used to improve the generalization ability of the model.Based on variance gradient modeling and interpolation by neighborhood pixel method,the pixels of the fused image transition smoothly,strengthen the details of the fused image and improve the quality of the image.The experimental results show that the evaluation indexes of image fusion quality of the proposed algorithm are better than the traditional fusion algorithm,and the processing time of training set and test set is shorter.

deep convolutional networksinterpolationimage fusionfilteringneighborhood pixel method

李飞、马雪亮

展开 >

安徽国际商务职业学院信息工程学院,安徽 合肥 231131

中国科学技术大学信息科学技术学院,安徽 合肥 230026

深度卷积网络 插值 图像融合 滤波 邻域像素法

2024

太原师范学院学报(自然科学版)
太原师范学院

太原师范学院学报(自然科学版)

影响因子:0.127
ISSN:1672-2027
年,卷(期):2024.23(3)