首页|基于无趣项挖掘的双视图去流行度偏差推荐

基于无趣项挖掘的双视图去流行度偏差推荐

扫码查看
流行度偏差是推荐系统中普遍存在的问题,它导致流行项目被过度推荐,而非流行项目则被忽视.现有对于流行度偏差去偏的研究主要通过对推荐结果进行重排序,或者在训练过程中融合正则化,以提升非流行项目的曝光率,但是数据稀疏和不区分用户对流行项目和非流行项目的偏好成为进一步研究的阻碍.针对此问题提出的基于无趣项挖掘的双视图流行度偏差去偏推荐方法,主要解决两个问题:(1)通过挖掘无趣项缓解数据稀疏和用户选择偏差对推荐结果的影响;(2)通过双视图学习提升非流行项目曝光率,同时兼顾不同用户对流行和非流行项目的偏好.为了验证方法的有效性,在 3个公开数据集上进行了分析与对比,实验结果表明,此方法在提升非准确率性能的同时,能有效缓解流行度偏差.
A Dual-view De-popularity Bias Recommendation Method Based on Uninteresting Item Mining
Popularity bias is a common problem in recommender systems,which causes popular items to be over-rec-ommended and non-popular items to be ignored.The existing research on popularity bias debiasing mainly improves the exposure of non-popular items by reordering the recommendation results or integrating regularization in the training pro-cess,but data sparseness and indistinguishability of users'preferences for popular items and non-popular items have be-come obstacles to further research.Aiming at this problem,a two-view popularity bias debiasing method is proposed based on uninteresting item mining,which mainly solves two problems:(1)Mitigate the impact of data sparsity and user selection bias on recommendation results by mining uninteresting items;(2)Dual-view learning is used to ensure that the exposure of non-popular items is improved while taking into account the preferences of different users for popular and non-popular items.In order to verify the effectiveness of the method,analysis and comparison are carried out on three public datasets.The experimental results show that the proposed method can effectively alleviate the popularity devi-ation while improving the non-accuracy performance.

recommendation systempopularity biasuninteresting itemdual-view learning

彭仕鑫、张力生

展开 >

重庆邮电大学 软件工程学院,重庆 400065

推荐系统 流行度偏差 无趣项 双视图学习

2024

台州学院学报
台州学院

台州学院学报

CHSSCD
影响因子:0.283
ISSN:1672-3708
年,卷(期):2024.46(6)