首页|基于改进YOLOv5的交通标志检测与识别

基于改进YOLOv5的交通标志检测与识别

扫码查看
针对无人驾驶时识别不同道路环境下小型交通标志准确率低、检测速度慢的问题,提出一种基于改进YOLOv5的目标识别算法.为了减小模型体积,提高模型推理速度,该算法用Ghost模块替换原有的网络架构,在特征融合阶段结合通道注意力机制,以帮助模型更好地聚焦于图像中的关键信息.为了增强对小目标的特征提取能力,对原C3 模块进行改进,引入滑动窗口模块(Swin Transformer Block,STB),并采用中国交通标志数据集TT100K进行对比验证.结果表明:文中提出的方法识别准确率为 92.6%,比原始YOLOv5 算法提升了 0.7%;平均准确率均值达到 93.5%,比YOLOv5 算法提高了2.5%.
Traffic Sign Detection Algorithm Based on Improved YOLOv5
Aiming at the problems of low accuracy and slow detection speed in identifying small traffic signs on roads in different environments during driverless driving,a target recognition algorithm based on improved YOLOv5 was proposed.In order to reduce the model volume and improve the model inference speed,this algorithm uses the Ghost fea-ture module to replace the original network architecture.Fusion and channel attention mechanisms are combined at the feature module level to help the model better focus on key information in the image.In order to enhance the feature ex-traction ability of small targets,the original C3 module was improved,the STB module(Swin Transformer Blocks)was in-troduced,and the Chinese traffic sign data set TT100K was introduced for comparison and verification.The results showed that the recognition accuracy of the method proposed in the paper was 92.6%,an increase of 0.7%;The value reached 93.5%,an increase of 2.5%.

traffic sign recognitionobject detectionattention mechanism

刘昕宇、薛波、林梦成

展开 >

江苏理工学院 机械工程学院,江苏 常州 213001

交通标志识别 目标检测 注意力机制

2024

台州学院学报
台州学院

台州学院学报

CHSSCD
影响因子:0.283
ISSN:1672-3708
年,卷(期):2024.46(6)