首页|基于改进PSO-PID的无刷直流电机矢量控制

基于改进PSO-PID的无刷直流电机矢量控制

扫码查看
无刷直流电机作为家用电器和精密仪器的动力源器件,在实际控制系统中通常采用传统的比例-积分-微分(proportion integral differential,PID)控制,但传统的PID控制精准度较低,对外界干扰较为敏感,无法满足使用的精准要求.针对这一问题,一种利用粒子群算法来实现无刷直流电机矢量控制的方法被提出:首先,搭建无刷直流电机数学模型;其次,利用仿真软件对电机矢量控制系统模型进行搭建,再利用改进粒子群算法对电机PID控制器参数进行优化,以实现对无刷直流电机系统的精确控制;最后,以STM32F407单片机搭建实验平台,并进行实验验证.结果表明:该方法与传统矢量控制相比,在稳态为 800 r/min和 1 500 r/min时输出的最大超调量分别降低了 32.30%和 38.09%,调整时间分别优化了 15.25%和 5.66%;在负载阶段的最大转速差缩减了 29.28 r/min,调整时间优化了 8.08%,抗干扰能力和系统稳定性显著提高.
Optimization Method for Brushless DC Motor Vector Control Based on Improved PSO-PID
The brushless DC motors,commonly used as a power source for household appliances and precision instru-ments,are often controlled by traditionally proportion integral differential(PID)control algorithm with lower precision,which is more sensitive to external disturbances and can not meet the precise requirements.To address this issue,a vec-tor control method for brushless DC motors using particle swarm optimization(PSO)has been proposed.First,a mathemat-ical model of the brushless DC motor was constructed.Subsequently,simulation software was used to build a model of the motor vector control system,and the parameters of the motor's PID controller were optimized by using an improved particle swarm optimization algorithm to achieve precise control of the brushless DC motor system.Finally,an experimen-tal platform was constructed by using the STM32F407 microcontroller,and experimental verification was conducted.The results indicated that,compared to traditional vector control,the proposed method reduced the maximum overshoot by 32.30%and 38.09%at steady states of 800 r/min and 1500 r/min,respectively,and optimized the settling time by 15.25%and 5.66%.During the load phase,the maximum speed deviation was reduced by 29.28 r/min,and the settling time was optimized by 8.08%.The anti-interference capability and system stability were significantly improved.

vector controlbrushless DC motorPSO algorithmSTM32F407 microcontroller

靳凯、肖平、吕傲宁

展开 >

安徽工程大学机械与车辆工程学院,安徽 芜湖 241000

安徽工程大学智能汽车线控底盘系统安徽省重点实验室,安徽 芜湖 241000

矢量控制 无刷直流电机 粒子群算法 STM32F407单片机

2024

台州学院学报
台州学院

台州学院学报

CHSSCD
影响因子:0.283
ISSN:1672-3708
年,卷(期):2024.46(6)