首页|基于迁移学习的非均质储层参数预测方法

基于迁移学习的非均质储层参数预测方法

扫码查看
针对传统储层参数预测方法常忽略渗流机理和参数相关性的问题,提出了一种融合渗流理论与迁移学习的储层参数预测模型.通过SMOTE过采样算法,有效处理了样本不均衡问题;利用随机森林算法建立了岩性及渗流能力判别模型,为储层参数预测提供渗流机理信息;结合参数相关性,运用迁移学习技术搭建储层参数预测模型.结果表明,通过引入岩性和渗流能力判别技术,能够进行储层参数之间的相关性分析,可以有效提升储层参数的预测精度.该模型的储层孔隙度和渗透率的误差为3.51%和15.17%,预测准确率较传统的储层参数预测方法有显著提升.该方法可有效解决非均质储层参数预测难题,为人工智能技术与物理模型结合研究提供参考.
A Prediction Method for Heterogeneous Reservoir Parameters Based on Transfer Learning
To address the issue of traditional methods neglecting flow mechanisms and parameter correlations,a pre-diction model of reservoir parametert hat integrates seepage theory with transfer learning is proposed.By using the oversampling algorithm of SMOTE,the issue of imbalanced samples is effectively addressed.The discriminative mod-el of lithology andseepage capacity is established by using random forest,which provides the information of seepage mechanism for reservoir parameter predicting.Combined with parameter correlation,the technology of transfer learn-ingis used to build a reservoir parameter prediction model.The results show that the correlation analysis between res-ervoir parameters can be conducted by introducing lithology and seepage capacity discrimination technology,which can effectively improve the prediction accuracy of reservoir parameters.The prediction error of the model in porosity and permeability parameters is 3.51%and 15.17%,respectively,and the prediction accuracy is significantly im-proved.This method can effectively address the issues of parameters prediction in heterogeneous reservoir,and pro-vide reference for the research combining artificial intelligence technology with physical models.

reservoir parameter predictiontransfer learningSMOTErandom forestneural network

高国海、王欣、蒋薇、王永生、张恩莉、周燕、李亮

展开 >

西南石油大学,四川 成都 610500

中国石油西南油气田分公司,四川 成都 610041

中国石油川庆钻探工程有限公司,四川 成都 610051

储层参数预测 迁移学习 SMOTE 随机森林 神经网络

2024

特种油气藏
中油辽河油田公司

特种油气藏

CSTPCD北大核心
影响因子:1.626
ISSN:1006-6535
年,卷(期):2024.31(5)