首页|基于CCD-YOLOv5算法的铸件表面缺陷检测模型

基于CCD-YOLOv5算法的铸件表面缺陷检测模型

扫码查看
针对铸件表面缺陷检测对象种类繁多、目标不明显、特征多样等因素,提出一种基于改进YOLOv5算法的铸件表面缺陷检测模型.对数据样本做翻转、旋转、调色处理,使用9-Mosaic数据增强,丰富样本数量特征;将CSPDarknet53模块替换为C2f模块,丰富轻量化网络梯度信息;引入CA注意力机制,提升模型泛化能力;将耦合头模块替换为解耦头模块,提升拟合速度.改进CCD-YOLOv5对铸件表面缺陷检测的准确率由78.2%提升至82.9%,召回率由74.3%提升至76.7%,mAP@0.5值由76.4%提升至81.0%.结果表明,改进模型有效提升了综合识别检测效果.
Casting Surface Defect Detection Model Based on CCD-YOLOv5 Algorithm
Aiming at the complexities of diverse casting surface defect detection objects,ambiguous targets,and vary-ing features,an enhanced YOLOv5-based model for casting surface defect detection was proposed.The data samples were subjected to flipping,rotation,and color adjustment techniques,alongside the utilization of 9-Mosaic data enhancement to broaden sample pool and enrich characteristics.CSPDarknet53 module was replaced with C2f module,aiming to enrich gradient information within lightweight network.CA attention mechanism was introduced to enhance generalization capabilities of model.Additionally,coupled-head module was replaced with decoupled-head module,enabling a faster fitting process.Consequently,the modified CCD-YOLOv5 model exhibits an increasing defect detec-tion accuracy from 78.2%to 82.9%,and recall rate is enhanced from 74.3%to 76.7%,while mAP@0.5 value is enhanced from 76.4%to 81.0%.The results indicate that the modified model effectively enhances overall recognition performance.

Casting EffectsTarget DetectionCCD-YOLOv5

鄢之麟、钟收成、孙进、肖洁

展开 >

湖北工业大学电气与电子工程学院,武汉 430068

武汉云计算科技有限公司,武汉 430019

铸件表面缺陷 目标检测 CCD-YOLOv5

2024

特种铸造及有色合金
中国机械工程学会铸造分会

特种铸造及有色合金

CSTPCD北大核心
影响因子:0.481
ISSN:1001-2249
年,卷(期):2024.44(8)
  • 8