首页|基于对抗神经网络的镁合金力学性能逆向设计

基于对抗神经网络的镁合金力学性能逆向设计

扫码查看
为了特定的应用场景或特性要求寻找合适的材料,本研究提出一种基于循环生成对抗网络的逆向设计框架,集成了长短期记忆人工神经网络和变分自编码器,应用在镁合金从力学性能到成分和挤压参数的逆向设计.框架模型相较于传统的人工神经网络和支持向量机算法预测精度分别提高了27%和47%,在测试集中的均方误差和平均绝对误差分别为0.09和0.15,同时提供了参考范围,以缩小镁合金逆向设计空间.
Reverse Design of Mechanical Properties of Magnesium Alloy Based on Generative Adversative Nets
In order to find suitable materials for specific application scenarios or feature requirements,a reverse design framework based on the Cycle Generative Adversarial Network(Cycle-GAN)was proposed,which integrates Long Short-Term Memory(LSTM)artificial neural networks and Variational Autoencoders(VAE)and applied to the reverse design of magnesium alloys,covering aspects from mechanical performance to composition and extrusion parameters.Compared to traditional artificial neural networks and support vector machine algorithms,the framework model demonstrates an improvement of 27%and 47%in prediction accuracy,respectively.The mean squared error and mean absolute error on the test dataset are 0.09 and 0.15.Additionally,the framework provides a reference range,narrowing down the everse design space for of magnesium alloys.

Magnesium AlloysReverse DesignCycle-generative Adversarial NetworksMechanical Properties

马洪浩、董万鹏、苏德君、曹雪坤

展开 >

上海工程技术大学材料科学与工程学院,上海 201620

镁合金 逆向设计 循环生成对抗网络 力学性能

上海市Ⅲ类高峰学科资助项目

2024

特种铸造及有色合金
中国机械工程学会铸造分会

特种铸造及有色合金

CSTPCD北大核心
影响因子:0.481
ISSN:1001-2249
年,卷(期):2024.44(10)
  • 3