首页|基于GRNN的短期光伏功率预测

基于GRNN的短期光伏功率预测

扫码查看
为提高光伏电站运营当中对输出功率预测的准确度,进一步提升光伏电站的智能化程度,降低光伏电站的运营成本,建立了一种基于GRNN算法的输出功率预测模型.模型利用GRNN神经网络的非线性映射能力预测短期光伏输出功率,可在同等条件下,相较BP神经网络预测算法得到更接近于实际的输出功率值.本模型发挥出GRNN算法结构简单的特性,在实验中实现了较高的预测准确度,同时有助于提高电网运行的稳定性.
Short-Term Photovoltaic Power Prediction Based on GRNN
In order to improve the accuracy of output power prediction in the operation of photovoltaic power plants,further enhance the intelligence of photovoltaic power plants,and reduce the operating cost of photovoltaic power plants,an output power prediction model based on GRNN algorithm is established.The model uses the nonlinear mapping ability of GRNN neural network to predict the short-term photovo-ltaic output power,which can be closer to the actual output power value than BP neural network predic-tion algorithm under the same conditions.The model takes advantage of the simple structure of GRNN algorithm,and achieves high prediction accuracy in the experiment,which is also helpful to improve the stability of power grid operation.

Photovoltaic power plantsOutput powerBP neural networkGRNN algorithm

赵金金、王晓娟

展开 >

内蒙古电子信息职业技术学院电子与自动化学院,呼和浩特 010011

光伏电站 输出功率 BP神经网络 GRNN算法

内蒙古电子信息职业技术学院科研项目内蒙古自治区高等学校科研项目

KZY2021002NJSY23043

2024

微处理机
中国电子科技集团公司第四十七研究所

微处理机

影响因子:0.183
ISSN:1002-2279
年,卷(期):2024.45(2)
  • 8