首页|基于密集混合注意力和全局补偿的图像去雨网络

基于密集混合注意力和全局补偿的图像去雨网络

扫码查看
针对现有图像去雨算法提取雨线特征效果不佳导致雨纹残留的问题,提出一种基于密集混合注意力和全局补偿的图像去雨网络.通过多层卷积运算,提取输入雨天图像的浅层特征.融合密集连接与残差网络的优势,引入多注意力机制,设计密集残差注意力模块,以此实现特征循环利用并捕获图像的多尺度特征.加入全局补偿模块以确保特征图像提取的全面性.通过卷积层重建特征,得到清晰且无雨的图像.实验证明,所提出的算法优于现有的经典和新颖算法,能有效清除雨痕,并提升图像的整体视觉感受.
Image Deraining Network Based on Dense Hybrid Attention and Global Compensation
To address the issue of rain streaks remaining due to the poor extraction of rain line features by existing image deraining algorithms,an image deraining network based on dense hybrid attention and global compensation is proposed.Shallow features of the input rainy image are extracted through multi-layer convolution operations.By integrating the advantages of dense connections and residual networks,a dense residual attention module is designed by introducing multiple attention mechanisms to achieve feature recycling and capture multi-scale features of the image.A global compensation module is added to ensure the comprehensiveness of feature extraction.Features are reconstructed through convolutional layers to obtain a clear and rain-free image.Experimental results show that the proposed algorithm outperforms existing classical and novel algorithms,effectively removing rain streaks and enhancing the overall visual quality of the image.

Deep learningImage derainingDense hybrid attentionGlobal compensation

盖勇刚

展开 >

沈阳理工大学自动化与电气工程学院,沈阳 110159

深度学习 图像去雨 密集混合注意力 全局补偿

辽宁省教育厅基本科研重点攻关项目

JYTZD2023006

2024

微处理机
中国电子科技集团公司第四十七研究所

微处理机

影响因子:0.183
ISSN:1002-2279
年,卷(期):2024.45(3)
  • 12