首页|基于五次B样条的工业机器人轨迹优化

基于五次B样条的工业机器人轨迹优化

扫码查看
为提高工业机器人的工作效率,提出一种以时间最优为目标的轨迹优化方法,在5次B样条曲线轨迹规划原理的基础上,引入遗传算法对轨迹进行优化.针对工作时间建立适应度函数,并通过选择交叉概率和变异概率操作产生新的轨迹解,与未被淘汰的父代组成新的种群,经过迭代求得运行时间最优的期望解.利用MATLAB软件对这一方法进行仿真,结果表明,经分析遗传算法优化后,轨迹运行时间明显减少,且具有良好的轨迹效果.
Trajectory Optimization of Industrial Robots Based on Quintic B-Splines
To improve the working efficiency of industrial robots,a trajectory optimization method with minimum time as the objective is proposed.Based on the principle of quintic B-spline curve trajectory planning,a genetic algorithm is introduced to optimize the trajectory.A fitness function is established for the working time,and new trajectory solutions are generated by selecting crossover probability and mutation probability operations,and they are combined with the uneliminated parent generation to form a new population.The optimal expected solution with the shortest running time is obtained through iteration.The method is simulated using MATLAB software,and the results show that after analysis of genetic algorithm optimization,the trajectory running time is significantly reduced and the trajectory effect is good.

Trajectory planningQuintic B-spline curveTrajectory optimizationGenetic algorithm

宋辉、李东辉

展开 >

沈阳工业大学信息科学与工程学院,沈阳 110870

轨迹规划 5次B样条曲线 轨迹优化 遗传算法

2024

微处理机
中国电子科技集团公司第四十七研究所

微处理机

影响因子:0.183
ISSN:1002-2279
年,卷(期):2024.45(4)