首页|基于路径排序的元路径模式搜索算法

基于路径排序的元路径模式搜索算法

扫码查看
针对现有的基于元路径模式建模的异质图神经网络模型灵活性和完全性较差的问题,为进一步提高异质图神经网络模型的效率,基于对现有模型原理的详细分析,提出一种双向路径排序(FR-PR)算法.该算法发挥了图神经网络作为一种基于深度学习的图表示技术在提取图数据特征方面的优越性能,可以自动识别异质图中的元路径模式,并对其进行排序.通过实验,在常用开源异质图数据集上与目前已有的可提取异质图元路径模式的模型进行对比分析,验证了算法的有效性.
Metapath Pattern Search Algorithm Based on Path Ranking
To address the issues of poor flexibility and completeness in existing heterogeneous graph neural network models based on metapath pattern modeling,and to further improve the efficiency of heter-ogeneous graph neural network models,a Forward-Reverse Path Ranking algorithm is proposed based on a detailed analysis of existing model principles.The algorithm leverages the superior performance of graph neural networks as a deep learning-based graph representation technique in extracting graph data features,and can automatically identify and rank metapath patterns in heterogeneous graphs.Through experiments,comparative analyses are conducted with existing models capable of extracting metapath patterns from heterogeneous graphs on commonly used open-source heterogeneous graph datasets,verifying the effective-ness of the algorithm.

Heterogeneous graphsMetapathsPath ranking

李振军、赵华、刘祖军、陶周天、杨斌、黄嘉琦、谭卓、邢颖

展开 >

智慧足迹数据科技有限公司,北京 100033

中国联通研究院,北京 100048

北京邮电大学人工智能学院,北京 100876

异质图 元路径 路径排序

2024

微处理机
中国电子科技集团公司第四十七研究所

微处理机

影响因子:0.183
ISSN:1002-2279
年,卷(期):2024.45(5)