首页|基于机器学习的多输入切换效应的统计静态时序分析方法

基于机器学习的多输入切换效应的统计静态时序分析方法

扫码查看
静态时序分析工具在超大规模集成电路应用中被广泛使用,其精度依赖于每个门的延时模型.静态时序分析工具使用的时序库通常只考虑单输入切换(SIS)导致的引脚到引脚延时,而多输入切换(MIS)导致的延时变化在高时钟频率和先进工艺节点上变得更加显著.在考虑统计静态时序分析时,MIS效应对其影响比对常规静态时序分析更大.为了研究MIS效应对电路统计时序的影响,文章提出了一种基于机器学习的MIS效应的统计静态时序分析方法.该方法考虑了不同条件下MIS和SIS的统计延时差异,并基于SIS统计延时模型建立了 MIS统计延时模型.经基准电路测试,结果表明,该方法对应延时分布的均值、标准差的相对误差分别不超过1.61%和3.94%,证明该方法具有较高的准确度.
Machine Learning-based Method for Statistical Static Timing Analysis of Multiple Input Switching Effects
Static timing analysis tools are extensively used in very large-scale integration(VLSI)circuit applications,where the accuracy heavily relies on the delay model of each gate.The timing libraries used by static timing analysis tools typically consider only the pin-to-pin delay due to single input switching(SIS).However,delay variations due to multiple input switching(MIS)become more significant at high clock frequencies and advanced process nodes.Compared with conventional static timing analysis,the MIS effect has a more pronounced influence in statistical static timing analysis.This study presents a machine learning-based method of statistical static timing analysis to investigate the influence of the MIS effect on circuit timing.This method considers the statistical delay difference between MIS and SIS under various conditions,enabling the establishment of a statistical delay model for MIS based on the SIS statistical delay model.Tests of benchmark circuits show that the relative errors of the mean and standard deviation of the corresponding delay distribution of the method do not exceed 1.61%and 3.94%,respectively,proving the high accuracy of this method.

machine learningmultiple input switchingstatistical static timing analysis(SSTA)statistical delay model

郭静静、宗璟宜、查佩文、蔡志匡

展开 >

南京邮电大学集成电路科学与工程学院射频集成与微组装技术国家地方联合工程实验室,南京 210023

机器学习 多输入切换 统计静态时序分析 统计延时模型

南京邮电大学引进人才科研启动基金射频集成与微组装技术国家地方联合工程实验室开放课题江苏省高等学校基础科学(自然科学)研究项目

NY221014KFJJ2021020421KJB510003

2024

微电子学
四川固体电路研究所

微电子学

CSTPCD北大核心
影响因子:0.274
ISSN:1004-3365
年,卷(期):2024.54(3)