首页|改进PSO-BP算法在函数拟合中的应用

改进PSO-BP算法在函数拟合中的应用

扫码查看
提出一种基于粒子群的改进BP算法,该算法在网络的学习过程中首先利用粒子群算法的全局搜索性,引入非线性惯性系数找到最优权值,其次重新给部分粒子参数赋值,增加粒子多样性,从而避免早熟收敛,进一步完善了原有粒子群算法.建立非线性函数的BP神经网络模型,并利用MATLAB软件对其进行拟合.仿真结果表明,改进算法对于非线性函数有良好的拟合能力,拟合误差相对减小.
The Application of Improved PSO-BP Algorithm in Nonlinear Function Approximating
An improved BP algorithm based on PSO is proposed.The algorithm in the network learning process using particle swarm algorithm global search,nonlinear inertial coefficient to find the optimal weights,then back to the part of the particle parameter assignment,so as to avoid premature convergence,further improve the original particle swarm optimization algorithm.The BP neural network model is constructed based on the dimensional nonlinear function.The simulation results show that the improved algorithm has good fitting ability to two dimensional nonlinear function and fitting error is improved.

neural networkBP algorithmPSO algorithminertia weightfunction approximate

魏巍、师娅

展开 >

西安邮电大学 物联网与两化融合研究院,陕西 西安 710061

西安邮电大学 通信与信息工程学院,陕西 西安 710121

神经网络 BP算法 PSO算法 惯性权重 函数拟合

陕西省教育厅科学研究计划资助项目

12JK0541

2017

微电子学与计算机
中国航天科技集团公司第九研究院第七七一研究所

微电子学与计算机

CSTPCDCSCD北大核心
影响因子:0.431
ISSN:1000-7180
年,卷(期):2017.34(9)
  • 9
  • 6