首页|基于注意力机制和多分支联合的行人重识别方法

基于注意力机制和多分支联合的行人重识别方法

扫码查看
行人重识别是指在行人图像中进行跨设备检索的任务,是一种在视频监控、智能安防等领域具有重要应用价值的技术.因受环境因素(如光照、角度、遮挡等)的干扰产生噪音,加大了行人信息特征的提取和辨别的难度,为此本文提出了一种基于注意力机制的多分支联合网络结构来提高模型的识别能力.该模型选用Omni-Scale Network作为骨干网络,实现全尺度特征的融合,同时嵌入串行的通道注意力机制和位置注意力机制,强化模型深层语义表达,最后借助多损失联合函数对模型进行监督训练,实现行人特征的全局特征提取和输出能力.仿真实验结果表明:该模型在公开数据集Market1501、DukeMTMC-reID以及CUHK03-Labeled(Detected)上的行人图像信息特征提取综合表现优于DRL-Net、DCAL等同类算法,Rank-1值分别达到了 95.3%、90.1%和80.4%(Labeled)/78.1%(Detected),mAP 值分别达到了 89.2%、80.47%和 78.9%(Labeled)/75.4%(Detected),具有较高的识别准确率.
Person re-identification method based on attention mechanism and multi-loss combination
Person re-identification is the task of cross-device retrieval in pedestrian images.It is a technology that has important application value in fields such as video surveillance and smart security.Due to the interference of environmental factors(such as lighting,angle,occlusion,etc.)that introduce noise,the difficulty of extracting and identifying pedestrian information features is increased.To this end,this paper proposes an attention-based multi-branch joint network structure to improve the model's recognition ability.The model uses Omni-Scale Network(OSNet)as the backbone network to achieve the fusion of full-scale features,and embeds serial channel attention mechanism and position attention mechanism to enhance the model's deep semantic expression.It employs multiple loss functions to jointly supervise the training of the model and achieve the global feature extraction and output capability of pedestrian features.Simulation experimental results show that the model's comprehensive performance of pedestrian image information feature extraction on public datasets Market1501,DukeMTMC-reID and CUHK03-Labeled(Detected)is better than similar algorithms such as DRL-Net and DCAL.The model achieves high recognition accuracy with Rank-1 values of 95.3%,90.1%and 80.4%(Labeled)/78.1%(Detected)and mAP values of 89.2%,80.47%and 78.9%(Labeled)/75.4%(Detected)on Market1501,DukeMTMC-reID and CUHK03-Labeled(Detected)datasets respectively.

person re-identificationresidual networkattention mechanismmulti-loss joint function

周昊、詹凤、周传华、任太娇、罗岚

展开 >

安徽工业大学管理科学与工程学院,安徽马鞍山 243002

马鞍山学院经济与管理学院,安徽马鞍山 243100

中国科学技术大学计算机科学与技术学院,安徽合肥 230026

安徽工业大学复杂系统多学科管理与控制安徽普通高校重点实验室,安徽马鞍山 243002

展开 >

行人重识别 残差网络 注意力机制 多损失联合函数

国家自然科学基金国家自然科学基金复杂系统多学科管理与控制安徽普通高等学校重点实验室项目

7177200261702006CS2020-04

2024

微电子学与计算机
中国航天科技集团公司第九研究院第七七一研究所

微电子学与计算机

CSTPCD
影响因子:0.431
ISSN:1000-7180
年,卷(期):2024.41(2)
  • 27