首页|基于感知自编码器的军品电路表面缺陷检测方法

基于感知自编码器的军品电路表面缺陷检测方法

扫码查看
面向军品电路的表面缺陷检测任务,由于军品电路存在多品种、小批量,表面复杂的特点,现有方法对图像重建效果较差,本研究提出一种基于感知自编码器(Perceptual AutoEncoder,PAE)的方法,将感知损失与自注意力模块引入无监督方法,增加方法的可迁移性与图像重建效果.与传统检测方法相比,基于感知自编码器的方法无需面临传统模板法的对齐、光照平衡、色彩平衡等问题,极大地提升了针对不同产品的可迁移性,可有效解决军品电路多品种、小批量检测面临的困难.具体方法为:使用特征金字塔与卷积方法提取不同尺度的特征向量并聚类,聚类后使用自注意力模块自动加权并增强需要关注的特征,而后重建图像,将该图像作为模板与输入进行差分比较.针对感知自编码器,在自制的数据集上进行了评估,评估结果表明,引入感知损失后的自编码器能够更准确地进行缺陷检测.
Military circuit surface defect detection method based on perception autoencoder
This study primarily addresses the task of surface defect detection in military-grade circuits.Given the diversity,small-batch nature,and complex surfaces of these circuits,existing methods demonstrate inadequate performance in image reconstruction.To resolve this,we propose a novel approach based on a Perceptual AutoEncoder(PAE),integrating perceptual loss and self-attention mechanisms into an unsupervised method,thereby enhancing the method's transferability and image reconstruction capabilities.Compared to traditional detection methods,our Perceptual AutoEncoder-based approach eliminates the need for alignment,illumination balance,and color balance,significantly improving transferability across different products and effectively addressing the challenge of detecting various small-batch military circuits.Specifically,we employ feature pyramids and convolutional methods to extract feature vectors of different scales and perform clustering.After clustering,we use the self-attention module to automatically weigh and enhance the features of interest,then reconstruct them into an image,which serves as a template for comparison with the input.Evaluations on our proprietary dataset indicate that the autoencoder,once integrated with perceptual loss,can more accurately detect defects.

surface defect detectionperception lossautoencoder

郭帅兵、胡玉龙、柴波

展开 >

西安微电子技术研究所,陕西西安 710054

表面缺陷检测 感知损失 自编码器

2024

微电子学与计算机
中国航天科技集团公司第九研究院第七七一研究所

微电子学与计算机

CSTPCD
影响因子:0.431
ISSN:1000-7180
年,卷(期):2024.41(4)
  • 9