首页|基于双目视觉的三维车辆检测算法

基于双目视觉的三维车辆检测算法

扫码查看
在自动驾驶中,车辆的三维目标检测是一项重要的场景理解任务.相比于昂贵的雷达设备,借助双目设备的三维目标检测方法有成本低定位准确的特点.基于立体区域卷积神经网络(Stereo RCNN)提出了一种用于双目视觉的三维目标检测OC-3DNet算法,有效地提高了检测精度.针对特征提取高分辨率与感受野的矛盾,结合特征提取网络与注意力引导特征金字塔(AC-FPN),有效地提高了算法对小目标的检测精度.针对三维中心投影检测误差大的问题,建立了一种新的三维中心投影与二维中心的约束关系,进一步提升了三维目标检测的精度.实验结果表明,改进后的OC-3DNet算法在以0.7为阈值的三维目标检测上平均精度为43%,较Stereo R-CNN三维目标检测的平均精度提升了约3%.
A 3D target detection algorithm for detecting vehicles based on binocular vision
In autonomous driving,the detection of 3D targets in vehicles is an important scene understanding task.Compared to expensive radar devices,3D target detection methods with the aid of binocular devices have the advantage of low cost and accurate localisation.This paper proposes a three-dimensional object detection OC-3DNet algorithm for binocular vision based on the Stereo Region Convolutional Neural Network(Stereo RCNN),which effectively improves the detection accuracy.To solve the contradiction between the high resolution of the feature extraction part of the network and the perceptual field,this paper combines the Attention-guided Feature Pyramid Network(AC-FPN)after the feature extraction network to improve the detection accuracy of the algorithm for small targets.To solve the problem of large errors in 3D centre projection detection,this paper proposes to establish a constraint relationship between the 3D centre projection and the 2D centre,which further improves the accuracy of 3D object detection.Experimental results show that the improved OC-3DNet algorithm has an average accuracy of 43%on 3D target detection with a threshold of 0.7,which is about 3%improvement over the average accuracy of Stereo R-CNN 3D target detection.

binocular vision3D target detectionAC-FPNprediction of 3D center

陶洋、汤新玲

展开 >

重庆邮电大学通信与信息工程学院,重庆 400065

双目视觉 三维目标检测 AC-FPN 三维中心点预测

2024

微电子学与计算机
中国航天科技集团公司第九研究院第七七一研究所

微电子学与计算机

CSTPCD
影响因子:0.431
ISSN:1000-7180
年,卷(期):2024.41(5)
  • 29