首页|一种改进YOLOv7的轻量化二次虹膜定位算法

一种改进YOLOv7的轻量化二次虹膜定位算法

扫码查看
传统虹膜定位算法存在定位精度差、受噪声干扰敏感、鲁棒性差、定位速度缓慢等问题,极大限制了虹膜识别的发展.随着深度学习发展,结合卷积的虹膜定位算法性能有了大幅提高,但是仍有很大的进步空间和进步需要.基于YOLOv7 算法,针对虹膜定位需求进行改进,提出了一种轻量化的二次虹膜定位算法.在JLU4.0 和CASIA-irisV4-Lamp数据集进行实验,在IoU阈值取 0.9 情况下,定位准确率分别达到了 0.983 和 0.935,mAP分别为 95.41 和 89.07,对比原始框架分别提升了 4.14 和 3.18 指标,同时模型大小仅为原始网络框架的 11.5%.结果表明,改进后的模型小,定位速度优异且定位准确,具有较高鲁棒性.
A lightweight secondary iris localization algorithm with improved YOLOv7
The traditional iris location algorithm has many problems,such as poor location accuracy,sensitivity to noise interference,poor robustness,and slow location speed,which greatly limits the development of iris recognition.With the development of deep learning,the performance of iris location algorithm combined with convolution has been greatly improved,but there is still a lot of room for improvement and need for improvement.Based on YOLOv7 algorithm,this paper proposes a lightweight secondary iris location algorithm to improve the iris location requirements.Experiments were carried out on the JLU4.0 and CASIA-irisV4-Lamp data sets.When the IoU threshold was 0.9,the positioning accuracy reached 0.983 and 0.935,and the mAP was 95.41 and 89.07,respectively.Compared with the original framework,the indicators were improved by 4.14 and 3.18,respectively.At the same time,the model size was only 11.5%of the original network framework.The results show that the improved model has small size,excellent positioning speed,accurate positioning and high robustness.

target detectioniris localizationlightweigh

于青禾、张田、刘怀钦

展开 >

青岛理工大学 信息与控制工程学院,山东 青岛 266520

目标检测 虹膜定位 轻量级

山东省自然科学基金

ZR2017BF043

2024

微电子学与计算机
中国航天科技集团公司第九研究院第七七一研究所

微电子学与计算机

CSTPCD
影响因子:0.431
ISSN:1000-7180
年,卷(期):2024.41(8)