首页|基于深度学习和联邦学习的工控入侵检测研究

基于深度学习和联邦学习的工控入侵检测研究

Intrusion detection of industrial control based on deep learning and federated learning

扫码查看
深度学习和入侵检测技术的结合为工业控制网络提供了较好的安全防护;而联邦学习在保护用户数据隐私的前提下采用多方的数据训练一个高效的模型成为工业控制入侵检测领域研究的热点.针对目前工业控制网络流量维度高、特征冗余、缺乏攻击样本导致入侵检测系统检测率低的问题,提出了一种基于深度学习和联邦学习的入侵检测方法,在保护数据隐私的前提下,采用多方数据共同训练一个模型.首先,提出一种多模型融合的入侵检测模型,采用权重绑定的堆叠自编码器和单层卷积神经网络初步提取网络流量特征,并采用残差卷积神经网络和残差双向门控循环单元进一步提取网络流量的空间特征和时序特征,将提取到的两种特征融合后进行网络攻击判别.其次,建立基于上述模型和联邦学习的工控网入侵检测系统,使用储水箱数据集和天然气管道数据集验证系统的有效性.实验结果表明,基于深度学习和联邦学习的工控网入侵检测系统可以提高入侵检测模型检测率,为工业控制网络提供更好的安全防护.
The combination of deep learning and intrusion detection technology has brought better security protection to industrial control networks.Federated learning has become a hot research topic in the field of industrial control intrusion detection by employing data from multiple parties to train an efficient model under the premise of protecting user data privacy.Aiming at the problem of low detection rate of intrusion detection system due to high dimension,feature redundancy,and lack of attack samples of industrial control network traffic,an industrial control network intrusion detection system based on deep learning and federated learning is constructed.Firstly,a multi-model fusion intrusion detection model is proposed,use weight-tied stacked autoencoder and single layer convolutional neural network to initially extract network traffic features,and use residual convolutional neural network and residual bidirectional gated recurrent unit to further extract spatial features and temporal features of network traffic,the extracted two features are fused to identify network attacks.Secondly,an industrial control network intrusion detection system based on the above model and federated learning is established,and the effectiveness of the system is verified using water storage tank dataset and gas pipeline dataset.The experimental results show that the industrial control network intrusion detection system based on deep learning and federated learning can improve the detection rate of the intrusion detection model and provide better security protection to the industrial control network.

industrial control networkintrusion detectiondeep learningfederated learning

吴维鑫、侯会文、石乐义

展开 >

中国石油大学(华东)计算机科学与技术学院,山东 青岛 266580

工业控制网络 入侵检测 深度学习 联邦学习

国家自然科学基金山东省自然科学基金

61772551ZR2019MF034

2024

微电子学与计算机
中国航天科技集团公司第九研究院第七七一研究所

微电子学与计算机

CSTPCD
影响因子:0.431
ISSN:1000-7180
年,卷(期):2024.41(9)