首页|基于双维度增强的弱监督语义分割算法

基于双维度增强的弱监督语义分割算法

扫码查看
针对全监督语义分割标注成本高的问题,提出一种仅使用低成本的图像级标签的弱监督语义分割方法.首先,将输入图片通过骨干网络进行特征提取,在网络中插入双维度增强模块把注意力扩散到不容易关注的区域.其次,利用获得的特征图和自注意力模块学习语义相似性,并利用相似性进一步扩大定位图的覆盖区域.再次,利用浅层特征中包含的低级视觉信息对背景建模,生成精细的定位图,然后构建精细定位图和初始定位图的一致性,以自监督的方式不断细化定位图.最后,经过后处理方法获得伪标签指导分割网络.算法仅使用图像级标签在Pascal Voc 2012 上实现了验证集 70.4%和测试集 69.2%的平均交并比,相比其他自监督方法效果较优.
Weakly supervised semantic segmentation algorithm based on double dimensional enhancement
Aiming at the high cost of fully supervised semantic segmentation,a weakly supervised semantic segmentation method using only low-cost image-level tags is proposed.Firstly,feature extraction is carried out on the input image through the backbone network,and a dual-dimensional enhancement module is inserted into the network to spread attention to areas that are not easy to focus on.Secondly,semantic similarity is learned by using the obtained feature map and self-attention module,and the similarity is further expanded to cover the area of the location map.Generate fine location map,and finally build the consistency of fine location map and initial location map to generate intensive and accurate location map in a self-supervised way.The average intersection ratio of 70.4%of the verification set and 69.2%of the test set was achieved on Pascal Voc 2012 using only image-level tags,which is better than other self-supervised methods.

weakly supervised learningsemantic segmentationself-supervisiondeep learning

文凯、张少镇

展开 >

重庆邮电大学 通信与信息工程学院,重庆 400065

重庆邮电大学 通信新技术应用研究中心,重庆 400065

弱监督学习 语义分割 自监督 深度学习

国家自然科学基金重庆市自然科学基金

62271095cstc2021jcyjmsxmX0634

2024

微电子学与计算机
中国航天科技集团公司第九研究院第七七一研究所

微电子学与计算机

CSTPCD
影响因子:0.431
ISSN:1000-7180
年,卷(期):2024.41(9)