首页|基于CSTDNet的PCB表面元器件检测算法

基于CSTDNet的PCB表面元器件检测算法

扫码查看
PCB表面元器件存在分布密集、尺寸小、外观相似等特点,所以检测时容易出现漏检和误检问题.以VFNet为基础,提出了一种名为CSTDNet(Cross-Scale Task Dynamic Network)的PCB表面元器件检测算法.首先,在特征融合网络中添加跨尺度交互特征模块,以增强对小型元器件的特征描述能力;其次,在检测头网络中引入任务对齐学习机制,优化分类和回归任务的空间一致性;另外,在正负样本选择的过程中引入高斯动态软标签分配策略,以更好地补偿小型元器件的正样本数量.实验结果表明,改进后算法的FPS、mAP和mAP_s分别提升了 10.7%、11.8%和 7.6%,有效地提高了密集场景下小型元器件的检测性能.
PCB surface component detection algorithm based on CSTDNet
PCB surface components are characterized by dense distribution,small size,and similar appearances,making it challenging to accurately detect and identify issues.Therefore,this paper proposes a Cross-Scale Task Dynamic Network(CSTDNet)PCB surface component detection algorithm based on VFNet.Building upon VFNet,an algorithm named CSTDNet(Cross-Scale Task Dynamic Network)is proposed for the detection of PCB surface components.This algorithm incorporates a cross-scale interactive feature module into the fusion network to enhance the description capability of small components.Furthermore,a task alignment learning mechanism is integrated into the detection head network to optimize spatial consistency between classification and regression tasks.Additionally,a Gaussian dynamic soft label allocation strategy is introduced in the process of positive and negative sample selection to better compensate for the number of positive samples of small components.Experimental results show that the new detection algorithm improves the FPS,mAP,and mAP_s by 10.7%,11.8%and 7.6%,respectively,effectively enhancing the detection performance of small components in dense scenes.

componentsVFNetfeature fusionlabel allocation

郑飞、储茂祥、巩荣芬、刘光虎

展开 >

辽宁科技大学 电子与信息工程学院,辽宁 鞍山 114051

元器件 VFNet 特征融合 标签分配

辽宁省自然科学基金辽宁省教育厅基本科研项目辽宁省教育厅基本科研项目

2022-MS-3532020LNZD06LJKMZ20220640

2024

微电子学与计算机
中国航天科技集团公司第九研究院第七七一研究所

微电子学与计算机

CSTPCD
影响因子:0.431
ISSN:1000-7180
年,卷(期):2024.41(9)