首页|基于改进坐标注意力与原型修正的小样本学习

基于改进坐标注意力与原型修正的小样本学习

扫码查看
在小样本场景下,利用少量标记数据完成新类识别任务极具挑战性.由于数据的局限性,基于传统原型网络的小样本学习方法获得的类原型存在较大偏差.目前,大多数研究使用卷积神经网络作为特征提取器,但仅能捕获局部关系,无法全面提取样本信息.针对以上问题,基于改进坐标注意力机制,提出了融合嵌入传播与原型修正的小样本学习方法.模型通过改进坐标注意力机制建立图像在水平和垂直方向上的空间与通道信息的联系,获取样本更加准确的图像特征.通过嵌入传播算法对嵌入特征平滑处理后,利用标签传播预测查询集标签,选取查询集特征基于欧氏距离加权修正支持集原型,获得更具有代表性的类原型.在miniImageNet、tieredImageNet和CUB数据集上对所提方法进行了实验,同时与其他方法进行了对比.结果表明,所提方法取得了良好的效果,为解决小样本学习问题提供了一种前景可期的解决途径.
Improved coordinate attention and prototype rectification for few-shot learning
In few-shot scenarios,accomplishing the task of identifying new categories with minimal labeled data is highly challenging.Due to data limitations,few-shot learning methods based on traditional prototype networks exhibit significant biases in the generated class prototypes.Currently,most research relies on convolutional neural networks as feature extractors,capturing only local relationships and failing to comprehensively extract sample information.To tackle those issues,a novel few-shot learning approach is proposed,integrating improved coordinate attention mechanisms with embedding propagation and prototype rectification.The model enhances the spatial and channel information linkage of images in horizontal and vertical directions through improved coordinate attention mechanisms,obtaining more accurate image features from samples.Employing the embedding propagation algorithm smoothes embedded features,predicts query set labels via label propagation,and selects query set features to rectify support set prototypes based on Euclidean distance weighting,resulting in more representative class prototypes.Experimental validation on the miniImageNet,tieredImageNet,and CUB datasets demonstrates the method's favorable outcomes in comparison to other techniques.These findings suggest promising prospects for addressing few-shot learning challenges.

few-shot learningimproved coordinate attentionembedding propagationprototype rectification

郭晖、季伟东、孙成宏、张有胜

展开 >

哈尔滨师范大学 计算机科学与信息工程学院,黑龙江 哈尔滨 150025

小样本学习 改进坐标注意力 嵌入传播 原型修正

2024

微电子学与计算机
中国航天科技集团公司第九研究院第七七一研究所

微电子学与计算机

CSTPCD
影响因子:0.431
ISSN:1000-7180
年,卷(期):2024.41(12)