首页|基于混合神经网络的射频包络线峰谷值预测研究

基于混合神经网络的射频包络线峰谷值预测研究

扫码查看
针对传统包络跟踪电源中控制信号基准所需的射频信号包络线峰谷值的生成方法复杂、计算量大的缺点,提出了基于拟合神经网络和分类神经网络串联构成的混合神经网络预测射频信号包络线峰谷值,简化包络跟踪电源控制信号基准的生成方法.首先,利用拟合神经网络根据正交振幅调制的映射数据预测射频信号包络线.其次,利用 3 个并联的分类神经网络输出预测射频信号包络线的标签数据.最后,将预测射频信号包络线中各数据点的数值分别与其对应标签数据相乘,获得射频信号包络线的峰谷值信息,得到控制信号所需基准信息.Simulink平台上的仿真结果表明:与传统方法相比,所提方法计算量减少 21.548%,同时包络线峰谷值分类准确度为 99.98%,预测的射频信号包络线的均方根误差为 0.183 04.
Research on peak and valley value prediction of RF envelope based on hybrid neural network
Aiming at the disadvantages of complex and computation-intensive control signal generation in traditional envelope tracking power supply,the paper proposes a hybrid neural network based on the series of fitting neural network and classification neural network to predict the peak and valley values of RF signal envelope,and simplifies the control signal generation method by extracting the key features of envelope tracking power supply.Firstly,a fitting neural network is used to predict the envelope of the RF signal based on the quadrature amplitude modulated mapping data.Secondly,three parallel classification neural networks are used to output the label data to predict the envelope of RF signal.Finally,the value of each data point in the predicted RF signal envelope is multiplied by its corresponding label data respectively to obtain the peak and valley value information of the RF signal envelope and obtain the required information of the control signal.The simulation results on Simulink platform show that the proposed method can reduce the computational load by 21.548%compared with the traditional method.Meanwhile,the classification accuracy of peak and valley value of envelope is 99.98%,and the root-mean-square error of predicted RF signal envelope is 0.183 04.

hybrid neural networkenvelope tracking power supplyfeature extractionpeak and valley values of the envelope

杨龙祥、周岩

展开 >

南京邮电大学 自动化学院、人工智能学院,江苏 南京 210023

混合神经网络 包络跟踪电源 特征提取 包络线峰谷值

2024

微电子学与计算机
中国航天科技集团公司第九研究院第七七一研究所

微电子学与计算机

CSTPCD
影响因子:0.431
ISSN:1000-7180
年,卷(期):2024.41(12)