首页|顾及水平方向偏差的三维声呐点云数据分区滤波方法

顾及水平方向偏差的三维声呐点云数据分区滤波方法

扫码查看
三维声呐测量受到水下复杂环境干扰,通常存在较多噪点,需要进行精细滤波处理,才能应用于水下场景.针对现有算法的不足,从降低数据复杂度、局部特征分析和分块滤波等方面,建立了一套适用于三维声呐点云数据预处理方法.首先,针对不同区域点云在法向量、空间距离和回波强度的差异性,基于超体素聚类法实现水下复杂点云分块;然后,对点云块建立局部坐标系并进行趋势面拟合;最后,构建多维度点云误差检测数据,依据地形复杂度将点云块划分为三类区域,并采用Grubbs检验作为判定准则,实现分区域自适应阈值去噪.计算结果表明,所提综合滤波方法对于水平和垂直方向的点云数据均有较好的精度,平均总体精度达99.3%,平均Kappa系数达0.906,能够有效应用于水下复杂区域的三维声呐点云数据滤波处理.
A Partition Filtering Method for 3D Sonar Point Cloud Data Considering Horizontal Deviation
Objectives:3D sonar measurement is disturbed by the complex underwater environment and the point cloud data are usually with a high level of noise,which requires fine filtering before being applied to underwater scenes.Methods:Aiming at the shortcomings of the existing algorithms,a set of pre-pro-cessing methods for 3D sonar point cloud data is established from the aspects of reducing data complexity,local feature analysis and block filtering.First,the proposed method realizes the fine division of underwater complex space with respect to the differences in normal vector,spatial distance and echo strength of point clouds in different regions.Second,the trend surface fitting is carried out for local regions.Finally,the multi-dimensional point cloud data for error detection is constructed,the super-voxels are divided into three types of regions based on the terrain complexity,and the Grubbs test is used as a criterion of determi-nation to realize the adaptive threshold denoising for the subregion.Results:The results show that the pro-posed filtering method has good accuracy for both horizontal and vertical point cloud data,with an average overall accuracy of 99.3% and an average Kappa coefficient of 0.906 for the test results.Conclusions:The results show that the synthesized filtering method has a significant improvement in accuracy compared with the traditional trend surface filtering method,and can be effectively applied to the filtering processing of three-dimensional sonar point cloud data in the underwater complex region.

3D sonarpoint cloud filteringsuper-voxeltotal least squaresadaptive threshold

贺正军、吴云龙、李邵波、张绍成、李厚朴、边少锋

展开 >

中国地质大学(武汉)地理与信息工程学院,湖北 武汉,430074

中国地质大学(武汉)地质探测与评估教育部重点实验室,湖北 武汉,430074

海军工程大学电气工程学院,湖北 武汉,430034

三维声呐 点云滤波 超体素 整体最小二乘 自适应阈值

2024

武汉大学学报(信息科学版)
武汉大学

武汉大学学报(信息科学版)

CSTPCD北大核心
影响因子:1.072
ISSN:1671-8860
年,卷(期):2024.49(9)